
UNIVERSITY OF LJUBLJANA
FACULTY OF MATHEMATICS AND PHYSICS

Mathematics – 3rd cycle

Philipp Georg Haselwarter

Effective Metatheory for Type Theory

PhD Thesis

Advisor: prof. dr. Andrej Bauer

Ljubljana, 2021

UNIVERZA V LJUBLJANI
FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 3. stopnja

Philipp Georg Haselwarter

Učinkovalna meta-teorija za teorijo tipov

Doktorska disertacija

Mentor: prof. dr. Andrej Bauer

Ljubljana, 2021

Abstract

In this dissertation, I propose finitary type theories as a definition of a wide class
of type theories in the style of Martin-Löf, and I design a programming language for
deriving judgements in finitary type theories.
State of the art computer implementations of type theory rely on a computational

interpretation of type theory, either via decidability results or via realisability. Such
results are not readily available for all type theories studied in the literature, which
renders their implementation challenging.
The implementation of a flexible proof assistant supporting user-specified type

theories requires a general definition outlining the structure of a type theory. I give
a mathematically precise definition of a class of finitary type theories, that covers
familiar examples, including Extensional Type Theory, the Calculus of Constructions,
and Homotopy Type Theory. I first focus on the mathematical development of finitary
type theories, before turning to their implementation in proof assistants.
The definition proceeds in stages, starting with raw syntax, raw rules, and raw

type theories, then delineating finitary rules and type theories, and finally specifying
standard type theories. Once these definitions are accomplished, general meta-
theoretic results in the form of a uniqueness of typing theorem and a cut elimination
theorem are proved. I reformulate finitary type theories with a suitable treatment of
free variables as context-free type theories, paving the way to an implementation in a
proof assistant. The definition of context-free type theories again proceeds in stages of
refinement, and I prove metatheorems for each successive stage. Translation theorems
between context-free and finitary type theories relate the two formalisms.
I introduce the Andromeda metalanguage (AML), an effectful programming

language that allows convenient manipulation of judgement and rules of user-definable
context-free type theories, and supports common proof development techniques.
AML leverages algebraic effects and runners to extend proof assistant algorithms
with local hypothesis in a modular way. The operational semantics of AML is
inspired by bidirectional typing and helps the user harness contextual information,
exhibiting a virtuous interaction with effect operations. AML has been implemented
in the Andromeda prover, and I describe first experiments in the computer-assisted
development of context-free type theories in AML.

2020 Mathematics Subject Classification: 03B38, 03B70, 18C10, 68N15, 68Q10,
68V15, 03F50, 03F07
Keywords: Dependent type theory, algebraic theory, proof assistant, metalanguage,
computational effects

Izvleček

V disertaciji definiram končne teorije tipov kot širok razred teorij tipov v stilu
Martina-Löfa in oblikujem programski jezik za izpeljevanje sodb v splošnih teorijah
tipov.
Sodobne računalniške implementacije teorije tipov se zanašajo na njeno računsko

interpretacijo bodisi preko rezultatov o odločljivosti ali realizabilnosti. Takšni
rezultati pa niso na voljo za vse teorije tipov, ki jih srečamo v literaturi, zato njihova
implementacija predstavlja izziv.
Radi bi implementirali fleksibilen dokazovalni pomočnik, ki omogoča, da uporab-

nik sam določi teorijo tipov. Za to pa potrebujemo splošno definicijo teorije tipov, ki
oriše njeno strukturo. V disertaciji podam matematično natančno definicijo razreda
končnih teorij tipov, ki pokrije znane primere, vključno z ekstenzionalno teorijo
tipov, računom konstrukcij in homotopsko teorijo tipov. Najprej se osredotočim na
matematični razvoj končnih teorij tipov, preden se posvetim njihovi implementaciji v
dokazovalnih pomočnikih.
Definicija je zgrajena po stopnjah. Začnemo s surovo sintakso, surovimi pravili

in surovimi teorijami tipov, nato razmejimo končna pravila in teorije tipov ter na
koncu opredelimo standardne teorije tipov. S temi definicijami lahko dokažemo
tudi metateoretične rezultate kot sta izrek o enoličnosti tipov in izrek o eliminaciji
rezov. Da bi končne teorije tipov lažje implementirali v dokazovalnem pomočniku, jih
preoblikujem v kontekstno neodvisne teorije tipov, ki omogočajo pravilno ravnanje s
prostimi spremenljivkami. Definicija kontekstno neodvisnih teorij tipov je ponovno
zgrajena po stopnjah. Za vsako stopnjo dokažem primerne metaizreke. Formalizma
končnih torij tipov in kontekstno neodvisnih teorij tipov sta povezana preko izrekov
prevedbe.
Uvedem metajezik Andromeda (AML), učinkovni programski jezik, ki omogoča

priročno ravnanje s sodbami in pravili v kontekstno neodvisnih teorijah tipov, ki jih
uporabnik lahko sam določi. Jezik tudi podpira običajne tehnike za razvoj dokazov.
AML izkoristi algebrajske učinke in poganjalce, da na modularen način z lokalnimi
hipotezami razširi algoritme v dokazovalnih pomočnikih. Operacijska semantika
jezika AML se naslanja na dvosmerno tipiziranje in pomaga uporabniku unovčiti
informacije o kontekstu. S tem pokaže uspešno interakcijo z operacijami učinkov.
AML je implementiran v dokazovalnem pomočniku Andromeda. Opišem tudi prve
poskuse razvoja kontekstno neodvisnih teorij tipov z računalniško pomočjo v AML.

2020 Mathematics Subject Classification: 03B38, 03B70, 18C10, 68N15, 68Q10,
68V15, 03F50, 03F05, 03F07
Ključne besede: Odvisna teorija tipov, algebrajska teorija, dokazovalni pomočnik,
metajezik, računski učinki

Acknowledgements
I thank my adviser Andrej Bauer for his scientific guidance and for his kindness,

which has helped create a welcoming research environment in Ljubljana. His
inexhaustible enthusiasm for research, the generosity with which he shares his
knowledge and ideas, and his ability to build bridges are a continuous inspiration for
me. It is only fitting that the Slovenian word for doctoral adviser is mentor.
I thank Robert Harper and Matija Pretnar for accepting to be part of my thesis

committee. Their insightful comments have, in some places greatly, improved the
quality of this manuscript. My collaboration with Peter LeFanu Lumsdaine has taught
me a great deal, not least to face hard technical problems with a smile, and I thank him
for that. I count myself lucky to have been a part of the foundations of mathematics
and theoretical computer science research group, and I will remember our many
joint lunches fondly. Thanks to Alex Simpson for his sense of humour and for his
ever insightful mathematical remarks. Niels Voorneveld and our honorary members
Riccardo Ugolini and Brett Chenoweth have endured my ramblings about type theory
over many a coffee, and I am grateful to have undertaken my doctoral studies along their
side. Thanks to Julija Vorotnjak for providing many of the aforementioned coffees,
and for always offering a kind word and an open ear. Anja Petković Komel eventually
joined me with great enthusiasm in my type theoretic investigations and collaborating
with her has been a delight. She deserves further thanks for the innumerable times
she helped me navigate the Slovene language. Thanks to Žiga Lukšič for frequently
hosting type theoretic research in his office, and for his commitment to teaching. Our
group has seen a number of academic visitors over the years, and I would like to
thank particularly Théo Winterhalter, Antonin Delpeuch, and Pierre-Marie Pédrot,
who made me feel at home linguistically.
This thesis would not have been possible without the many teachers and friends

that I met along the way. Thank you to my teachers who gave me the tools and the
confidence to pursue research, in particular I want to name Markus Gnad, Diether
Thumser, Stef Graillat, Laurent Boudin, Emmanuel Chailloux, Paul-André Melliès,
and Matthieu Sozeau. I would not have wound up doing this PhD if I had not been
so fortunate to meet Eric Castro, Pierre Chemama, Béatrice Carré, Simon Jacquin,
Dahmun Goudarzi, Claire, Jakob Vidmar, Frédéric Bour, Rafaël Proust, and Alan
Picol. Thank you all.
Meine Eltern und mein Bruder waren immer für mich da, haben mich stets

unterstützt, an mich geglaubt und meine Neugierde geschürt. Ihr seid die beste Familie
die ich mir wünschen kann. Danke! Sofia, I cannot thank you enough for your
support throughout these tumultuous years, and for your bravery in embarking on this
adventure with me. You changed my world, thank you.

Software This manuscript uses the memoir class (Madsen and Wilson 2021).
Inference rules are typeset with the mathpartir package (Rémy 2015). GNU Emacs
(FSF 2021b) with AUCTeX (FSF 2021a) was used for document preparation.

Funding This dissertation is based upon work supported by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF under Awards No.
FA9550-14-1-0096 and No. FA9550-17-1-0326.
Support for travel via short term sciencific missions to Stockholm and Aarhus

through COST Action EUTypes CA15123 is gratefully acknowledged.
A part of the results presented in this thesis was obtained during a visit to the Max

Planck Institute for Mathematics (MPIM) in Bonn, during theWorkshop on Homotopy
Type Theory in 2016. This visit was supported by the MPIM. Both this support and
the hospitality of MPIM are gratefully acknowledged.
A part of the results presented in this thesis was obtained during a visit to the

Hausdorff Research Institute for Mathematics (HIM), University of Bonn, during the
Types, Sets and Constructions trimester in 2018. This visit was supported by the HIM.
Both this support and the hospitality of HIM are gratefully acknowledged.

Contents

Abstract 5

Izvleček 7

Contents 11

List of Figures 14

1 Introduction 19
1.1 Approaches to Type Theory . 19
1.2 On the mathematical study of type theory 22
1.3 Type theory and proof assistants 23

1.3.1 Computer support for new type theories. 24
1.3.2 Requirements for user definable type theories 24
1.3.3 Effects in proof assistants 26

1.4 Aim of the thesis . 26
1.5 Overview of the thesis . 27

1.5.1 Chapter 2: Finitary type theories 27
1.5.2 Chapter 3: Context-free type theories 28
1.5.3 Chapter 4: An effectful metalanguage for type theories . . . 29
1.5.4 Chapter 5: Conclusion . 30

2 Finitary type theories 33
2.1 Finitary type theories . 34

2.1.1 Raw syntax . 34
2.1.2 Deductive systems . 42
2.1.3 Raw rules and type theories 43
2.1.4 Finitary rules and type theories 50

2.2 Metatheorems . 52
2.2.1 Metatheorems about raw theories 52
2.2.2 Metatheorems about finitary theories 70
2.2.3 Metatheorems about standard theories 71

3 Context-free type theories 75

11

12 CONTENTS

3.1 Context-free finitary type theories 75
3.1.1 Raw syntax of context-free type theories 76
3.1.2 Context-free rules and type theories 82

3.2 Metatheorems about context-free theories 89
3.2.1 Metatheorems about context-free raw theories 89
3.2.2 Metatheorems about context-free finitary theories 100
3.2.3 Metatheorems about context-free standard theories 100
3.2.4 Special metatheorems about context-free theories 102

3.3 A correspondence between theories with and without contexts . . . 104
3.3.1 Translation from cf-theories to tt-theories 104
3.3.2 Translation from tt-theories to cf-theories 109

4 An effectful metalanguage for type theories 119
4.1 AML preliminaries . 120

4.1.1 Bidirectional evaluation 120
4.1.2 Operations and runners . 126

4.2 AML syntax . 129
4.3 AML operational semantics . 133

4.3.1 General programming . 134
4.3.2 Type theory . 137
4.3.3 Toplevel . 141

4.4 Standard derived forms . 145
4.4.1 Rule application and formation 147
4.4.2 Handling syntactic equality 150
4.4.3 Recovering λCF-Lambda 150

4.5 On soundness & completeness . 151
4.6 AML in Andromeda 2 . 152

5 Conclusion 155
5.1 Related work . 155

5.1.1 Finitary type theories . 155
5.1.2 Andromeda metalanguage 157

5.2 Future work . 161

A AML implementation of the boundary conversion lemma 163

B Equational LF in Andromeda 2 165
B.1 Equational LF rules . 166
B.2 Equational LF examples . 172

C Razširjeni povzetek v slovenščini 177
C.1 Poglavje 1: Uvod . 177
C.2 Poglavje 2: Končne teorije tipov 178
C.3 Poglavje 3: Kontekstno neodvisne teorije tipov 181

CONTENTS 13

C.4 Poglavje 4: Učinkovni metajezik za teorije tipov 184
C.5 Poglavje 5: Zaključek . 189

D Bibliography 191

List of Figures

2.1 The raw syntax of expressions, boundaries and judgements. 37
2.2 Free, bound, and metavariable occurrences 38
2.3 Filling the head of a boundary . 40
2.4 Variable, metavariable and abstraction closure rules 48
2.5 Equality closure rules . 48
2.6 Well-formed abstracted boundaries . 49
2.7 Well-formed metavariable and variable contexts 49
2.8 Admissible substitution rules . 59

3.1 The raw syntax of context-free finitary type theories 77
3.2 Context-free variable occurrences and assumption sets 79
3.3 Abstraction and substitution . 80
3.4 Context-free filling the head of a boundary 81
3.5 The action of a metavariable instantiation 82
3.6 Context-free free variable, metavariable, and abstraction closure rules . 87
3.7 Context-free closure rules for equality 88
3.8 Well-formed context-free abstracted boundaries 88

4.1 Declarative and algorithmic rules . 121
4.2 Bidirectional typing and elaboration rules, with and without contexts . . 122
4.3 Pseudo-AML rules . 124
4.4 Syntax of general AML computations 129
4.5 Syntax of type theoretic AML computations 130
4.6 Syntax of AML values and results . 131
4.7 Syntax of AML toplevel commands and patterns 132
4.8 Operational semantics of return and operations 134
4.9 Operational semantics of let binding 135
4.10 Operational semantics of runners . 136
4.11 Operational semantics of case matching and function application 137
4.12 Operational semantics of ascription and mode-switch 137
4.13 Operational semantics of TT variables 138
4.14 Operational semantics of metavariables and congruence rules 139
4.15 Operational semantics of TT equality forms 140
4.16 Operational semantics of TT boundaries 141

14

LIST OF FIGURES 15

4.17 Pattern matching . 143
4.18 Operational semantics of toplevel commands 144
4.19 Syntax of derived boundary, substitution, and conversion computations . 146
4.20 Induced operational semantics of boundaries and substitution 146
4.21 Syntax and induced operational semantics of derived fresh computation 147
4.22 Syntax of derived abstraction computations 148
4.23 Induced operational semantics of abstraction 149
4.24 Syntax and induced operational semantics of rule application 149
4.25 Syntax and induced operational semantics of derivable rules 149
4.26 Syntax and induced operational semantics of checking lambda 151

C.1 Pravila zaprtja za spremenljivke, metaspremenljivke in abstrakcijo. . . . 179
C.2 Surova sintaksa končnih kontekstno neodvisnih teorij tipov. 182
C.3 Izvleček kontekstno neodvisnih pravil. 182
C.4 Sintaksa splošnih AML izračunov (izvleček). 184
C.5 Sintaksa AML izračunov za teorije tipov (izvleček). 185
C.6 Sintaksa AML vrednosti in rezultatov (izvleček). 185
C.7 Sintaksa AML ukazov na najvišjem nivoju in vzorcev (izvleček). 185
C.8 Operacijska semantika operacij. 186
C.9 Operacijska semantika vezave “let” (izvleček). 186
C.10 Operacijska semantika poganjalcev (izvleček). 186
C.11 Operacijska semantika pripisa meje in menjave načina. 187
C.12 Operacijska semantika spremenljivk teorije tipov. 187
C.13 Operacijska semantika za projekcijo meje v teoriji tipov. 187
C.14 Sintaksa in inducirana operacijska semantika uporabe pravila. 188

Ukiyo-e print illustration showingmasses of children playing over, under, and around an
enormous elephant. Possibly related to the specimen in (Johnstone 2003). Illustration
in “Omacha-e, kodomo-e, harimazechō”, ca. 1875. Source: Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Children_Exploring_an_Elephant_(Ukiyo-e,_ca._1875).jpg

Chapter 1

Introduction

In this thesis we develop a general mathematical theory of dependent type theories
and describe their computational treatment in an effectful metatheory. Many examples
of dependent type theories such as Martin-Löf type theory (Martin-Löf 1998) or the
Calculus of Constructions (Coquand and Huet 1988) have been studied, but there is no
generally accepted definition that encompasses a wide range of examples and allows
the development of a general metatheory. We propose such a definition in the form of
finitary type theories, and prove basic metatheoretical results. We then reformulate
finitary type theories in such a way that practical proof development inside such a type
theory becomes feasible, arriving at the definition of context free type theories. This
allows us to develop a generic metalanguage for standard finitary type theories.
In the remainder of this chapter we will describe what lead us to seek a general

definition of type theories and outline the landscape of proof assistants. We will
mention the difficulties inherent in the design of such a definition and of a generic
proof assistant, and give a brief overview of each chapter of the thesis.

1.1 Approaches to Type Theory

There are three main paths to approach type theory: the logical path, the computational
path, and the categorical path. Their history is much too broad a subject to be covered
in this introduction, so we will only focus on a few key developments that are of direct
relevance to the work presented in this dissertation.
The logical path can be traced back to the foundational crisis at the turn of the

twentieth century when Bertrand Russell proposed a doctrine of types in Appendix B
to his heroic effort to ground mathematics in logic (Russell 1903), and continued to
study type theories (Russell 1908) in order to rule out paradoxes that plagued naïve
foundational systems. Investigations by the logicians of the 1920s and 1930s, notably
Church, lead to the development of the theory of simple types. Dependent types first
entered the picture with the inception of De Bruijn’s Automath in 1967, the first proof
assistant that allowed manipulation of derivations as objects in a formal system. From
this point onward, the development of type theory and proof assistants has been tightly

19

20 CHAPTER 1. INTRODUCTION

interwoven. In the beginning of the 1970s, Martin-Löf proposed his intuitionistic
theory of types (Martin-Löf 1998) as a foundation for constructive mathematics.
Martin-Löf’s paradigm was that type theory should serve as the formalism both for
logical reasoning about and for the construction of mathematical objects. In the early
1970s, Milner started working on the LCF proof checker (Milner 1972), starting a
line of research of importance to proof assistants at large and to the HOL lineage of
provers based on Church’s simple type theory in particular. As a side effect of the
LCF project, the ML programming language was created (Gordon, Milner, Morris
et al. 1978; Milner 1978). Meanwhile, Girard (Girard 1972) and shortly thereafter
Reynolds (Reynolds 1974) independently invented System F.
Church connected simple types in 1940 to his lambda calculus (Church 1940).

This laid the foundation for the computational interpretation of type theory, as, by then,
Church, Kleene, and Turing had shown that the lambda calculus was universal as a
model of computation. The rôle of types in connection with computation crystallised
with the Curry-Howard correspondence, connecting the computational content of
typed lambda calculi to derivations in natural deduction. The slogans “propositions-
as-types” and “proofs-as-programs” are associated with this correspondence, and the
extension of the correspondence to new computational and logical disciplines has been
extraordinarily fruitful, fuelling research in proof theory and programming languages.
Constable and his group at Cornell developed the NuPRL system (Constable et al.

1986) based on computational type theory inspired by ideas of Martin-Löf. The
starting point of computational type theory is a language with an operational semantics.
A type then specifies the behaviour of a program. The fact that a term has a certain
type thus requires further evidence in the form of a typing derivation.
In 1984, Coquand and Huet proposed the calculus of constructions (Coquand and

Huet 1988), a simple yet expressive type theory adding impredicative quantification
in the style of Girard and Reynold’s System F to Martin-Lövian type theory. As
the typing relation of the calculus of constructions is decidable, whether or not a
term has a certain type, or equivalently whether a proposed proof constitute adequate
evidence for a theorem, can be mechanically checked by a computer. The calculus of
constructions forms the base upon which the Coq proof assistant is built.
The inception of the categorical, or algebraic, point of view is commonly attributed

to Lambek, who connected the simply typed lambda calculus to cartesian closed
categories in the early 1970s. This enabled the mathematical study of the general
denotational semantics of type theories, going beyond proof theoretical accounts.
Cartmell’s thesis on the study of the categorical semantics of Martin-Löf’s type theory
(Cartmell 1978) as an instance of a wider framework of generalised algebraic theories
appeared in 1978.
A variant of Martin-Löf’s type theory with identity types satisfying the so called

equality reflection rule became known as extensional type theory (Martin-Löf 1979;
Martin-Löf 1982), and Seely proposed locally cartesian closed categories as their
natural categorical model (Seely 1984). Much of the attention of categorical semantics
focused on extensional type theory until the construction of the groupoid model by
Hofmann and Streicher in 1993 (Hofmann and Streicher 1994). However, due to

1.1. APPROACHES TO TYPE THEORY 21

the reflection of provable equality into judgemental equality that is characteristic of
extensional type theory, type checking is not decidable in this setting (Hofmann 1997;
Castellan et al. 2017). As a result, almost all computer implementations of type theory
restrict their attention to intensional type theory, despite the mathematical naturality
of extensional type theory. This created a rift between semanticists and practitioners
of type theory. Hofmann famously demonstrated that nothing is lost by working
in intensional type theory when derivability of judgements is considered (Hofmann
1997). The practical implications of working with intensional type theory are not fully
accounted for in this result, as the convenience of conducting proofs with extensional
equality types is lost when replaced by intensional identity types and axioms. Around
2006, the gods of type theory decided that the time was ripe for homotopy type theory,
and several researchers independently observed the existence of homotopical models of
intensional identity types. The subsequent rise of univalent foundations and homotopy
type theory (Voevodsky 2014; Univalent Foundations Program 2013), spearheaded by
Voevodsky, has lead to a surge in interest in the study of the semantics of intensional
type theory. Meanwhile, the implementation of extensional type theory is still mostly
uncharted territory.
In a unexpected turn of events, proponents of homotopy type theory rediscovered

the appeal of extensional type theory. Simplicial sets are the traditional natural
homotopy category of topological spaces and provided the first known model of
univalent type theory (Kapulkin and Lumsdaine 2012; Streicher 2011). An obvious
question is thus how to define simplicial types inside homotopy type theory. As
it turns out, this and the (at least conjecturally) simpler problem of constructing
semi-simplicial types, is surprisingly hard (Mike Shulman 2014; Herbelin 2015). It is
an open problem whether either of the two constructions is possible in homotopy type
theory.
Voevodsky proposed his homotopy type system to “reflect the structures which exist

in the target of the canonical univalent model of the Martin-Lof system” (Voevodsky
2013), where the model in question refers to simplicial sets. In addition to the structure
required for the interpretation of the intensional identity type, simplicial sets also form
a model of extensional type theory. This observation is internalised in HTS, which
“wraps” univalent type theory in an extensional type theory. Variants of HTS such as
2-level type theory have since been used to define semi-simplicial types (Altenkirch
et al. 2016), and provide a method for the construction of similar infinite dimensional
structures. HTS contains extensional type theory as a subsystem, and type checking is
thus undecidable also in HTS.
In this thesis we study a wide class of type theories, including those that do not

allow for decidable type checking. For this study, we will adopt Martin-Löf’s style of
presenting type theory. Specifically, Martin-Löf presents type theory via four kinds of
judgements:
Under hypotheses Γ,

• Γ ⊢ 𝐴 type asserts that 𝐴 is a well-formed type,
• Γ ⊢ 𝐴 ≡ 𝐵 asserts that the types 𝐴 and 𝐵 are equal,

22 CHAPTER 1. INTRODUCTION

• Γ ⊢ 𝑠 : 𝐴 asserts that 𝑠 is a term of type 𝐴,
• Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 asserts that the terms 𝑠 and 𝑡 of type 𝐴 are equal.

A type theory is then given as a set of rules, whose inductive reading defines a
deductive system for the derivation of judgements.

1.2 On the mathematical study of type theory
The development of a mathematical study of type theory allows us to connect type
theory with well-understood mathematical concepts. So far, the focus of research
in this area has been the development of semantics for specific type theories, such
as the interpretation of extensional type theory in locally cartesian closed categories
by Seely (1984), Curien (1993), and Hofmann (1994), or more recently the study of
homotopical models of intensional type theory (Voevodsky 2006; Awodey and Warren
2007). The study of classes of categorical models for certain type theories, starting
with Cartmell (1978), has been extremely fruitful.
The study of general phenomena in type theory requires a general definition of

what constitutes a type theory. Broadly speaking, such a definition should cover
familiar examples of type theory and allow us to prove general theorems about type
theories. These desiderata can be seen as opposing forces: if a definition is too general,
we cannot hope to prove or even state certain theorems, if it is too narrow, important
type theories are excluded. A satisfactory treatment of type theory in the spirit of
categorical logic has to define what a type theory is, define a class of models, and
establish a correspondence between the two.
As the focus of this thesis is the connection between type theories and proof

assistants, rather than model theory, there are some additional properties we would
like a general definition of type theory to satisfy.

1. It is straightforward to take a type theory from a research paper and formulate
it according to the general definition. This means that the general definition
should include the following notions:

(i) (abstract) raw syntax, including a treatment of substitution and metavari-
ables

(ii) (hypothetical) judgement forms
(iii) the deductive system induced by common structural rules and specific

rules of a particular type theory

2. It can be interpreted in any reasonably strong metatheory, and is not committed
to one particular ambient foundation.

3. The implementation of a type theory in a proof assistant can easily be seen to
form an instance of the general definition.

Together with Andrej Bauer and Peter LeFanu Lumsdaine, we proposed general
dependent type theories (Bauer, Haselwarter and Lumsdaine 2020) as a mathematical

1.3. TYPE THEORY AND PROOF ASSISTANTS 23

framework for the study of type theories. This line of work happened concurrently
with the preparation of this thesis but will not be included here. In our opinion, general
dependent type theories are well suited to address points (1) and (2). They do not,
however, directly lend themselves to the implementation of a proof assistant. To
reduce the gap between general dependent type theories and an implementation, we
will proceed in two steps, introducing first finitary type theories and then context-free
type theories, as outlined in Section 1.5.

1.3 Type theory and proof assistants

The goal of proof assistants, also known as interactive theorem provers, is to allow the
computer verification of formal proofs. At the core of a theorem prover is a logical
formalism, as, for example, first order logic with set theory, higher order logic, or a
version of type theory. Type theory in the tradition of Martin-Löf is a natural choice
as logical foundation, because it is built around the notion of dependency, which is
pervasive in mathematics. Type theory further allows mathematical objects to be
represented directly as types, in contrast, for example, to set theories, which rely on the
encoding of mathematical structures in terms of simpler sets. The direct presentation
of mathematics in type theory is philosophically appealing from a structuralists point
of view (Awodey 2014). Moreover, it has the very concrete advantage that both the
computer implementation and the users of the proof assistant can work directly with
the primitives of the theory. This allows efficient representations of and computation
with mathematical structures, such as finite groups (Gonthier, Asperti et al. 2013).
There are numerous successful proof assistants based on type theory. In particular,

NuPRL (Constable et al. 1986) belongs to the school of provers based on realisability,
or computational type theory. Coq (The Coq development team 2021a), Agda (Norell
2007), and Lean (de Moura et al. 2015) instead rely on the decidability of type
checking for the type theories they respectively implement. The realisability approach
can handle expressive type theories that include strong logical principles, such as
equality reflection. The commitment to one particular realisability interpretation that
is inherent in computational type theory, however, means that a proof in NuPRL can
only be interpreted in a class of realisability models. The essential requirement for
decidable type checking is the decidability of judgemental equality. Systems based on
decidable type theories afford the user the convenience that any proofs of judgemental
equality can be relegated to the proof assistant. Decidable judgemental equality can
be used as powerful computation mechanism through small scale reflection (Gonthier,
Mahboubi et al. 2015), but unless it is used expertly, computation can quickly become
infeasible. A more severe limitation of this approach is that type checking is simply
undecidable for many type theories of interest.
All of the aforementioned proof assistants are tailored closely to the particular type

theory they implement. This is in fact a requirement of their respective approaches.
Extending a realisability model requires careful work, and crafting algorithms for
judgemental equality is a subtle business.

24 CHAPTER 1. INTRODUCTION

1.3.1 Computer support for new type theories.

As there is great interest in the study and development of new type theories, there is a
growing need for extensible proof assistants. Already early type theories proposed
by Martin-Löf were intended to be open ended and compatible with the introduction
of new types. Most mature proof assistants are indeed open ended in the sense that
they allow the definition of new inductive types according to fixed schemata. Deeper
changes to their core theory are harder to come by. For example, in Coq one can change
the universe system to include the rule Type : Type, but the addition of this feature
required modification of the implementation of Coq. Swapping out one type theory
for a different, albeit similar one is infeasible. For instance, the UniMath (Voevodsky
et al. n.d.) project developed in Coq aims to work within a minimal fragment of Coq’s
theory, but it is not possible to properly enforce this restriction.
One approach to work with a different type theories in a proof assistant is provided

by syntactic models (Hofmann 1997; S. P. Boulier 2018; S. Boulier et al. 2017; Pédrot
and Tabareau 2017). This is a powerful methodology to extend type theories with
new logical and computational principles via shallow embeddings. They preserve
desirable properties of the host type theory such as decidability of type checking.
However, this also means that their construction is challenging. Furthermore, there is
no mathematical theory characterising which type theories arise in this way.
Limited extensions of judgemental equality have been considered. Coq Modulo

Theory (Barras et al. 2011) is a proposal to extend the judgemental equality of Coq in
a safe way that preserves soundness and decidability of type checking. While CoqMT
allows to extend the equality checker with an arbitrary decidable first order theory, it
can of course not account for full equality reflection. A recent proposal by Abel and
Cockx considers the addition of rewrite rules to Agda (Cockx and Abel 2016), but,
as the user cannot control when these rules are applied, only a very specific class of
well-behaved rewriting rules can be used.
Finally, the development of a proof assistant requires both a high level of domain

expertise and many programming hours. It is thus not sustainable to develop a
dedicated proof assistant for each novel type theory proposed. Instead, we provide a
reusable framework in the hope that it can be of service to other researchers wishing
to experiment.

1.3.2 Requirements for user definable type theories

Considering the speed at which new type theories are proposed in research, the
need for a proof assistant with flexible support for user definable type theories is
increasingly evident. Such a flexible proof assistant would allow the user to decide on
the type theory they want to work in and provide good support for proof development
techniques commonly found in contemporary theorem provers.
In order to allow user definable type theories in a proof assistant, we first have to

delineate precisely a class of type theories that an implementation of a customisable
proof assistant should accept. In other words, we need a formal definition of type

1.3. TYPE THEORY AND PROOF ASSISTANTS 25

theories, for which we can then provide a flexible proof assistant. If users can postulate
arbitrary rules for judgemental equality, we cannot expect the resulting theory to have
decidable type checking. The proof assistant must thus provide control over equality
checking to the user.
In light of these requirements, a flexible proof assistant cannot be based on the

computation-based architectures used in systems such as NuPRL, Coq, or Agda. An
alternative approach is provided by the LCF/HOL architecture, pioneered by Robin
Milner (Gordon, Milner and Wadsworth 1979). In an LCF/HOL prover, the logic is
implemented in a minimalistic kernel, while proof automation and computation are
delegated to a metalanguage (Gordon 2000). The interface to the kernel is abstract,
and the type safety of the metalanguage guarantees that arbitrary computation can be
used without risking the soundness of the system. Instead of recording entire proof
trees, only the concluding judgement is stored.
The LCF/HOL architecture is appropriate for handling unspecified type theories

because it does not require them to be equipped with good computational properties.
Moreover, the commitment to a computational metalanguage allows the user to
program the system to develop domain-specific judgemental equality algorithms for
their type theory of choosing. For these reasons, in this thesis, we will develop a
flexible proof assistant adopting the LCF/HOL approach.
Handling judgemental equality is not the only obstacle to the implementation

of user definable type theories. As previously mentioned, extensional type theory
is one of the theories we want to be able to represent in our system. It serves as a
formidable source of counterexamples to the intuitions of implementers of intensional
type theories. Besides the aforementioned undecidability of equality, extensional type
theory also fails to satisfy strengthening (Harper, Honsell et al. 1993), as the equality
reflection rule induces a strong form of proof irrelevance whereby an inhabitant of the
equality type, potentially containing variables, can be eliminated without record in
the resulting judgement. It is worth pointing out that while extensional type theory is
an important example that we want to cover, it is not the only setting in which such
issues of proof irrelevance arise (Awodey and Bauer 2004), and that conversely the
techniques we use to solve the aforementioned issues still accommodate type theories
that do not display such “pathologies”.
A consequence of the failure of strengthening is that every judgement we derive has

to contain sufficient information to deduce in which context it is valid. Explicit repres-
entations of contexts as lists, as are commonly found in pen-and-paper presentations of
type theory, are ill-suited for implementation for reasons of efficiency, and because the
linear order of hypothesis is overly rigid when deriving judgements through forward
reasoning. For instance, the judgements 𝑥:𝐴, 𝑦:𝐵 ⊢ 𝑠 : 𝐶 and 𝑦:𝐵, 𝑥:𝐴 ⊢ 𝑡 : 𝐷 cannot
readily be combined as their contexts are different. Unstructured representations such
as a map of names to types is ill-suited because the proof-irrelevance incurred by
equality reflection also invalidates exchange (Bauer, Gilbert et al. 2018). Therefore,
a record of the dependencies between variables has to be kept. In the experimental
implementation of extensional type theory in Andromeda 1 (Bauer, Gilbert et al. 2018),
contexts were represented as directed acyclic graphs, similarly to the way certain proof

26 CHAPTER 1. INTRODUCTION

assistants implement a flexible universe management system (Huet 1988). This may
constitute a feasible implementation strategy but we found it unsatisfactory from a
type theoretic point of view.
We adopt an alternative solution by annotating variables with their types, and

removing contexts all together. The dependency graph is then implicit in the recursive
annotations of variables. To deal with examples such as the equality reflection rule,
the structure of equality judgements has to be changed, such that each equation records
the assumptions that were used in its derivation. This idea will form the basis of
context-free type theories (Chapter 3).

1.3.3 Effects in proof assistants

Proof engines for type theories are naturally effectful: the current theory signature is a
monotone state, unification can change global state, control effects are employed in
the form of backtracking, etc. MTac (Ziliani, Dreyer et al. 2013) and Lean represent
these effects as monads. In Coq, the tactic engine (Spiwack 2010) and Ltac2 (Pédrot
2019) select a few “blessed” effects that are primitive to the language and can be used
in direct style. This allows for a natural use of effectful computations as native part
of the language, such as references in ML, rather than as derived concept, such as
monads in e.g. Haskell, that force the user to manually sequence effectful computations
(Danvy 1992). Dually, the direct-style approach can be viewed as working in an
ambient tactic- or proof-monad (Kirchner and Muñoz 2010). For instance, the effects
available in the proof monad of Ltac2 are input-output, setting of mutable variables,
failure, backtracking, and accessing the current proof state, i.e. the current goals and
hypotheses. Manipulating the behaviour of effectful programs, for example steering
the unification engine, requires changes to the implementation of the underlying
algorithms. In recent years, there has been an emphasis on allowing the user to
customise the behaviour of proof assistants, for example via unification hints (Asperti
et al. 2009) and canonical structures (Mahboubi and Tassi 2013; Ziliani and Sozeau
2015).
We thus embrace effects as a reality in proof development rather than trying to

confine them to a monad. Proof development for general type theories is unchartered
territory, and we cannot foresee which techniques and effects will be the most useful.
We introduce effects into our language via algebraic effect operations and runners

(Ahman and Bauer 2019). Algebraic effects allow users to define their own effects
(Bauer and Pretnar 2015), and runners allow to locally modify the behaviour of
effect operations in a principled way. This allows the implementation of well-known
techniques while leaving space for experimentation, and opens the possibility for users
to customise the behaviour of tactics.

1.4 Aim of the thesis
The aim of this thesis is to develop an effective metatheory for type theory. This is
achieved by the proposing finitary type theories as a definition of a wide class of type

1.5. OVERVIEW OF THE THESIS 27

theories in the style of Martin-Löf, reformulating them as context-free type theories in
a style suitable for implementation, and designing an effectful programming language
for deriving judgements in context-free type theories.

1.5 Overview of the thesis

We give a brief overview of the contents of each chapter, and highlight novel
contributions.

1.5.1 Chapter 2: Finitary type theories

Chapter 2 proposes finitary type theories as an elementary definition of a wide class
of type theories in the style of Martin-Löf. A type theory should verify certain
meta-theoretical properties: the constituent parts of any derivable judgement should
be well-formed, substitution rules should be admissible, and each term should have a
unique type.
The definition of finitary type theories proceeds in stages. Each of the stages

refines the notion of rule and type theory by specifying conditions of well-formedness.
We start with the raw syntax (§2.1.1) of expressions and formal metavariables, out
of which contexts, substitutions, and judgements are formed. Next we introduce raw
rules (§2.1.3), a formal notion of what is commonly called “schematic inference rule”.
We introduce the structural rules (Figs. 2.4 to 2.6) that are shared by all type theories,
and define congruence rules (Def. 2.1.13). These rules are then collected into raw
type theories (Def. 2.1.16). The definition of raw rules ensures the well-typedness of
each constituent part of a raw rule, by requiring the derivability of the presuppositions
of a rule. In order to rule out circularities in the derivations of well-typedness, and to
provide an induction principle for finitary type theories, we introduce finitary rules
and type theories (§2.1.4). Finally, standard type theories are introduced (Def. 2.1.20)
to enforce that each symbol is associated to a unique rule. We prove metatheorems
about raw (§2.2.1), finitary (§2.2.2), and standard type theories (§2.2.3).

Contributions. A mathematically precise definition of type theories is proposed.
All constructions carried out in this chapter are constructive, and we aimed to use only
elementary notions that should be interpretable in a range of different foundational
formalisms. To summarise, we

• define a notion of arity and signature suitable for the binding structures commonly
found in type theory,

• define a general notion of raw syntax,
• give a formal treatment of metavariables,
• introduce a useful decomposition of judgements into heads and boundaries,
• define rules in a matching common type theoretic practise,
• explicate properties that make type theories finitary and standard,

28 CHAPTER 1. INTRODUCTION

• prove the following metatheorems:

– admissibility of substitution and equality substitution (Theorem 2.2.8),
– admissibility of instantiation of metavariables (Theorem 2.2.13) and
equality instantiation (Theorem 2.2.17),

– derivability of presuppositions (Theorem 2.2.18),
– admissibility of “economic” rules (Propositions 2.2.19 and 2.2.20)
– inversion principles (Theorem 2.2.22),
– uniqueness of typing (Theorem 2.2.24).

1.5.2 Chapter 3: Context-free type theories

The goal of this chapter is the development of a context-free presentation of finitary
type theories that can serve as foundation of the implementation of a proof assistant.
The definition of finitary type theories in Chapter 2 is well-suited for the metatheoretic
study of type theory, but does not address the implementation issues discussed in
Section 1.3.2. In particular, in keeping with traditional accounts of type theory,
contexts are explicitly represented as lists.
In context-free type theories, the syntax of expressions (§3.1.1) is modified so that

each free variable is annotated with its type a𝐴 rather than being assigned a type by a
context. As the variables occurring in the type annotation 𝐴 are also annotated, the
dependency between variables is recorded. Judgements in context-free type theories
thus do not carry an explicit context. Metavariables are treated analogously. To account
for the possibility of proof-irrelevant rules like equality reflection, where not all of
the variables used to derive the premises are recorded in the conclusion, we augment
type and term equality judgements with assumption sets (§3.1.1.5). Intuitively, in a
judgement ⊢ 𝐴 ≡ 𝐵 by 𝛼, the assumption set 𝛼 contains the (annotated) variables that
were used in the derivation of the equation but may not be amongst the free variables of
𝐴 and 𝐵. The conversion rule of type theory allows the use of a judgemental equality
to construct a term judgement. To ensure that assumption sets on equations are not
lost as a result of conversion, we include conversion terms (Fig. 3.1).
Following the development of finitary type theories, we introduce raw context-free

rules and type theories (§3.1.2). We proceed to define context-free finitary rules
and type theories whose well-formedness is derivable with respect to a well-founded
order (Def. 3.1.13), and standard theories (Def. 3.1.14).
Subsequently, we prove metatheorems about context-free raw (§3.2.1), finit-

ary (§3.2.2), and standard type theories (§3.2.3). In Section 3.2.4, we prove that raw
context-free type theories satisfy strengthening (Theorem 3.2.16). The constructions
underlying these metatheorems are defined on judgements rather than derivations, and
can thus be implemented effectively in a proof assistant for context-free type theories
without storing derivation trees. Finally, we establish a correspondence between type
theories with and without contexts by constructing translations back and forth (§3.3).

1.5. OVERVIEW OF THE THESIS 29

Contributions. A context-free definition of type theory is proposed. We show that
context-free type theories satisfy useful effective metatheorems. We provide a precise
connection to finitary type theories. To summarise, we

• define a syntax with annotated variables and metavariables,
• define context-free judgements with assumption sets,
• define rules appropriate structural rules (Figs. 3.6 to 3.8),
• explicate properties that make context-free type theories finitary and standard,
• prove the following metatheorems:

– admissibility of substitution (Theorems 3.2.4 and 3.2.7),
– derivability of presuppositions (Theorem 3.2.5),
– admissibility of instantiation of metavariables (Proposition 3.2.8),
– admissibility of “economic” rules (Propositions 3.2.9 and 3.2.10)
– fine-grained inversion principles (Theorem 3.2.14),
– uniqueness of typing (Theorem 3.2.15),
– admissibility of strengthening (Theorem 3.2.16),

• we give a translation of finitary context-free type theories to finitary type theories
with context (Theorem 3.3.5),

• we give a translation of standard type theories with context to standard context-
free type theories (Theorem 3.3.10).

1.5.3 Chapter 4: An effectful metalanguage for type theories

In Chapter 4, we present the Andromeda metalanguage (AML), an effectful pro-
gramming language that allows convenient manipulation of judgement and rules of
context-free type theories, and supports common proof development techniques.
The definition of context-free type theories is well suited as the kernel of a proof

assistant. AML combines type theoretic primitives for the construction of judgements,
boundaries, and rules, with general purpose programming constructs in the form of
functions, algebraic effect operations, and runners. The operational semantics of AML
is inspired by bidirectional typing. We explain how to refine a declarative definition
of type theory into a bidirectional one (§4.1.1). We then introduce bidirectional
evaluation, which we will generalise to context-free type theories. The effectful
character of AML arises from its use of operations and runners, which we explain
in Section 4.1.2. We define the formal syntax of AML computations, values, and
toplevel commands (§4.2). AML is equipped with an operational semantics (§4.3)
which combines bidirectional evaluation with operations and runners. The use of
effects is a central aspect of AML, and operations display a virtuous interaction with
bidirectional evaluation (§4.3.1). In Section 4.3.2, we describe the dynamic behaviour
of type theoretic primitives, as well as the computational interpretation of our effective
of metatheorems for context-free type theories, and the mechanism that allows users
to define their own type theories in AML (§4.3.3).
To showcase the expressiveness of AML and provide a more user friendly surface

language, we define a number of derived forms (§4.4). We present an AML program

30 CHAPTER 1. INTRODUCTION

implementing Lemma 3.2.17, which allows the user to work transparently with context-
free type theories, ignoring conversion terms (§4.4.2). The corresponding code can be
found in Appendix A. We outline the formal relation between AML and context-free
type theory (§4.5), and briefly present the implementation of AML in the Andromeda 2
prover (§4.6), and give a definition of Harper’s Equational Logical framework (Harper
2021) in Andromeda 2 (§B).

Contributions. AML is an effectful programming language for context-free type
theories, supporting proof development in user-specified type theories in a convenient
high level language. To summarise, we

• embed context-free type theories in a ML-style language,
• extend bidirectional typing to bidirectional evaluation,
• demonstrate how to employ runners for proof development with local hypotheses,
• provide a mechanism for user definable rules and derived rules,
• implement effective versions of metatheorems of standard context-free type
theories,

• implement AML in the Andromeda 2 prover.

1.5.4 Chapter 5: Conclusion

We give an overview over related work and outline directions for future work in
Chapter 5. In Section 5.1.1 we discuss the relation of finitary type theories to other
recently proposed general definitions of type theories. We compare the AML approach
to existing effectful metalanguages, user-extensible proof assistants, and previous work
of our own (§5.1.2). In Section 5.2, we suggest the next steps in the metatheoretic study
of finitary and context-free type theories and sketch interesting extensions. Finally, we
propose theoretical and practical questions as well as possible extensions for AML.

Ceci n’est pas un coq.
Source: Biodiversity Heritage Library.

https://www.flickr.com/photos/biodivlibrary/30215846353/in/album-72157674826238871/

Chapter 2

Finitary type theories

We present a general definition of a class of dependent type theories which we call
finitary type theories. Our definition broadly follows the development of general type
theories (Bauer, Haselwarter and Lumsdaine 2020), but is specialized to serve as a
formalism for implementation of a proof assistant. Nevertheless, we expect the notion
of finitary type theories to be applicable in other situations and without reference to
any particular implementation.

Our definition captures dependent type theories of Martin-Löf style, i.e. theories
that strictly separate terms and types, have four judgement forms (for terms, types,
type equations, and typed term equations), and hypothetical judgements standing in
intuitionistic contexts. Among examples are the intensional and extensional Martin-
Löf type theory, possibly with Tarski-style universes, homotopy type theory, Church’s
simple type theory, simply typed 𝜆-calculi, and many others. Counter-examples can
be found just as easily: in cubical type theory the interval type is special, cohesive and
linear type theories have non-intuitionistic contexts, polymorphic 𝜆-calculi quantify
over all types, pure type systems organize the judgement forms in their own way, and
so on.

The rest of this chapter proceeds as follows. In Section 2.1 we give an account of
dependent type theories that is close to how they are traditionally presented. First, the
raw abstract syntax of expressions and judgements is presented (Section 2.1.1) and
used to define raw type theories (Section 2.1.3). These suffice to define the notions
of derivation and deductive system, but may be quite unwieldy from a type-theoretic
viewpoint. We thus provide more restrictive but well-behaved notions of finitary and
standard type theories (Section 2.1.4).

In Section 2.2 we show that the definitions are sensible and desirable by establishing
good structural properties of type theories, such as admissibility of substitutions
(Theorem 2.2.8) and instantiations (Theorems 2.2.13 and 2.2.17), presuppositivity
(Theorem 2.2.18), an inversion principle (Theorem 2.2.22), and uniqueness of typing
(Theorem 2.2.24).

33

34 CHAPTER 2. FINITARY TYPE THEORIES

2.1 Finitary type theories
Our treatment of type theories follows in essence the definition of general type
theories carried out in (Bauer, Haselwarter and Lumsdaine 2020), but is tailored
to support algorithmic derivation checking in three respects: we limit ourselves to
finitary symbols and rules, construe metavariables as a separate syntactic class rather
than extensions of signatures by fresh symbols, and take binding of variables to be a
primitive operation on its own.

2.1.1 Raw syntax

In this section we describe the raw syntax of fintary type theories, also known as
pre-syntax. We operate at the level of abstract syntax, i.e. we construe syntactic
entities as syntax trees generated by grammatical rules in inductive fashion. Of course,
we still display such trees concretely as string of symbols, a custom that should not
detract from the abstract view.
Raw expressions are formed without any typing discipline, but they have to be

syntactically well-formed in the sense that free and bound variables must be well-
scoped and that all symbols must be applied in accordance with the given signature.
We shall explain the details of these conditions after a short word on notation.
We write [𝑋1, . . . , 𝑋𝑛] for a finite sequence and 𝑓 = ⟨𝑋1 ↦→𝑌1, . . . , 𝑋𝑛 ↦→𝑌𝑛⟩ for a

sequence of pairs (𝑋𝑖 , 𝑌𝑖) that represents a map taking each 𝑋𝑖 to 𝑌𝑖. An alternative
notation is ⟨𝑋1:𝑌1, . . . , 𝑋𝑛:𝑌𝑛⟩, and we may elide the parenthess [· · ·] and ⟨· · ·⟩. The
domain of such 𝑓 is the set | 𝑓 | = {𝑋1, . . . , 𝑋𝑛}, and it is understood that all 𝑋𝑖 are
different from one another. Given 𝑋 ∉ | 𝑓 |, the extension ⟨ 𝑓 , 𝑋 ↦→𝑌⟩ of 𝑓 by 𝑋 ↦→ 𝑌

is the map

⟨ 𝑓 , 𝑋 ↦→𝑌⟩ : 𝑍 ↦→
{︄
𝑌 if 𝑍 = 𝑋 ,
𝑓 (𝑍) if 𝑍 ∈ | 𝑓 |.

Given a list ℓ = [ℓ1, . . . , ℓ𝑛], we write ℓ(𝑖) = [ℓ1, . . . , ℓ𝑖−1] for its 𝑖-th initial segment.
We use the same notation in other situations, for example 𝑓(𝑖) = ⟨𝑋1 ↦→ 𝑌1, . . . , 𝑋𝑖−1 ↦→
𝑌𝑖−1⟩ for 𝑓 as above.

2.1.1.1 Variables and substitution

We distinguish notationally between the disjoint sets of free variables a, b, c, . . . and
bound variables 𝑥, 𝑦, 𝑧, . . ., each of which are presumed to be available in unlimited
supply. The free variables are scoped by variable contexts, while the bound ones are
always captured by abstractions.
The strict separation of free and bound variables is fashioned after locally nameless

syntax (McKinna and Pollack 1993; Charguéraud 2012), a common implementation
technique of variable binding in which free variables are represented as names and
the bound ones as de Bruijn indices (de Bruijn 1972). In Section 3.1 the separation
between free and bound variables will be even more pronounced, as only the former
ones are annotated with types.

2.1. FINITARY TYPE THEORIES 35

We write 𝑒[𝑠/𝑥] for the substitution of an expression 𝑠 for a bound variable 𝑥 in
expression 𝑒 and 𝑒[�⃗�/𝑥] for the (parallel) substitution of 𝑠1, . . . , 𝑠𝑛 for 𝑥1, . . . , 𝑥𝑛, with
the usual proviso about avoiding the capture of bound variables. In Section 2.2.1, when
we prove admissibility of substitution, we shall also substitute expressions for free
variables, which of course is written as 𝑒[𝑠/a]. Elsewhere we avoid such substitutions
and only ever replace free variables by bound ones, in which case we write 𝑒[𝑥/a].
This typically happens when an expression with a free variable is used as part of a
binder, such as the codomain of a Π-type or the body of a lambda. We take care to
always keep bound variables well-scoped under binders.

2.1.1.2 Arities and signatures

The raw expressions of a finitary type theory are formed using symbols and metavari-
ables, which constitute two separate syntactic classes. Each symbol and metavariable
has an associated arity, as follows.
The symbol arity (𝑐, [(𝑐1, 𝑛1), . . . , (𝑐𝑘 , 𝑛𝑘)]) of a symbol S tells us that

1. the syntactic class of S is 𝑐 ∈ {Ty, Tm},

2. S accepts 𝑘 arguments,

3. the 𝑖-th argument must have syntactic class 𝑐𝑖 ∈ {Ty, Tm,EqTy,EqTm} and
binds 𝑛𝑖 variables.

The syntactic classes Ty and Tm stand for type and term expressions, and EqTy
and EqTm for type and term equations, respectively. For the time being the latter two
are mere formalities, as the only expression of these syntactic classes are the dummy
values ★Ty and ★Tm. However, in Section 3.1 we will introduce genuine expressions of
syntactic classes EqTy and EqTm.
The information about symbol arities is collected in a signature Σ, which maps

each symbol to its arity. When discussing syntax, it is understood that such a signature
has been given, even if we do not mention it explicitly.

Example 2.1.1. The arity of a type constant such as bool is (Ty, []), the arity of a binary
term operation such as + is (Tm, [(Tm, 0), (Tm, 0)]), and the arity of a quantifier such
as the dependent product Π is (Ty, [(Ty, 0), (Ty, 1)]) because it is a type former taking
two type arguments, with the second one binding one variable.

The metavariable arity associated to a metavariable M is a pair (𝑐, 𝑛), where
the syntactic class 𝑐 ∈ {Ty, Tm,EqTy,EqTm} indicates whether M is respectively a
type, term, type equality, or term equality metavariable, and 𝑛 is the number of term
arguments it accepts. The metavariables of syntactic classes Ty and Tm are the object
metavariables, and can be used to form expressions. The metavariable of syntactic
classes EqTy and EqTm are the equality metavariables, and do not participate in
formation of expressions. We introduce them to streamline several definitions, and to

36 CHAPTER 2. FINITARY TYPE THEORIES

have a way of referring to equational premises in Section 3.1. The information about
metavariable arities is collected in a metavariable context, cf. Section 2.1.1.4.
A metavariable M of arity (𝑐, 𝑛) could be construed as a symbol of arity

(𝑐, [(Tm, 0), . . . , (Tm, 0)]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑛

).

This apporach is taken in (Bauer, Haselwarter and Lumsdaine 2020), but we keep
metavariables and symbols separate because they play different roles, especially in
context-free type theories in Section 3.1.

2.1.1.3 Raw expressions

The raw syntactic constituents of a finitary type theory, with respect to a given
signature Σ, are outlined in Fig. 2.1. In this section we discuss the top part of the
figure, which involves the syntax of term and type expressions, and arguments.
A type expression, or just a type, is formed by an application S(𝑒1, . . . , 𝑒𝑛) of

a type symbol to arguments, or an application M(𝑡1, . . . , 𝑡𝑛) of a type metavariable
to term expressions. A term expression, or just a term, is a free variable a, a
bound variable 𝑥, an application S(𝑒1, . . . , 𝑒𝑛) of a term symbol to arguments, or an
application M(𝑡1, . . . , 𝑡𝑛) of a term metavariable to term expressions.
An argument is a type or a term expression, the dummy argument★Ty of syntactic

class EqTy, or the dummy argument ★Tm of syntactic class EqTm. We write just ★
when it is clear which of the two should be used. Another kind of argument is an
abstraction {𝑥}𝑒, which binds 𝑥 in 𝑒. An iterated abstraction {𝑥1}{𝑥2} · · · {𝑥𝑛}𝑒 is
abbreviated as {𝑥}𝑒. Note that abstraction is a primitive syntactic operation, and that
it provides no typing information about 𝑥.

Example 2.1.2. In our notation a dependent product is written as Π(𝐴, {𝑥}𝐵), and a
fully annotated function as λ(𝐴, {𝑥}𝐵, {𝑥}𝑒). The fact that 𝑥 ranges over 𝐴 is not part
of the raw syntax and will be specified later by an inference rule.

In all cases, in order for an expression to be well-formed, the arities of symbols and
metavariables must be respected. If S has arity (𝑐, [(𝑐1, 𝑛1), . . . , (𝑐𝑘 , 𝑛𝑘)]), then it
must be applied to 𝑘 arguments 𝑒1, . . . , 𝑒𝑘 , where each 𝑒𝑖 is of the form {𝑥1} · · · {𝑥𝑛𝑖 }𝑒′𝑖
with 𝑒′

𝑖
a non-abstracted argument of syntactic class 𝑐𝑖. Similarly, a metavariable

M of arity (𝑛, 𝑐) must be applied to 𝑛 term expressions. When a symbol S takes no
arguments, we write the corresponding expression as S rather than S(), and similarly
for metavariables.
As is usual, expressions which differ only in the choice of names of bound variables

are considered syntactically equal, e.g., {𝑥}S(a, 𝑥) and {𝑦}S(a, 𝑦) are syntactically
equal and we may write ({𝑥}S(a, 𝑥)) = ({𝑦}S(a, 𝑦)).
For future reference we define in Fig. 2.2 the sets of free variable, bound variable,

and metavariable occurrences, where we write set comprehension as {| · · · |} in order
to distinguish it from abstraction. A syntactic entity is said to be closed if no free
variables occur in it.

2.1. FINITARY TYPE THEORIES 37

Type expression 𝐴, 𝐵 ::= S(𝑒1, . . . , 𝑒𝑛) type symbol application|︁|︁ M(𝑡1, . . . , 𝑡𝑛) type metavariable application
Term expression 𝑠, 𝑡 ::= a free variable|︁|︁ 𝑥 bound variable|︁|︁ S(𝑒1, . . . , 𝑒𝑛) term symbol application|︁|︁ M(𝑡1, . . . , 𝑡𝑛) term metavariable application

Argument 𝑒 ::= 𝐴 type argument|︁|︁ 𝑡 term argument|︁|︁ ★Ty dummy argument|︁|︁ ★Tm dummy argument|︁|︁ {𝑥}𝑒 abstracted argument (𝑥 bound in 𝑒)

Judgement thesis j ::= 𝐴 type 𝐴 is a type|︁|︁ 𝑡 : 𝐴 𝑡 has type 𝑇|︁|︁ 𝐴 ≡ 𝐵 by ★Ty 𝐴 and 𝐵 are equal types|︁|︁ 𝑠 ≡ 𝑡 : 𝐴 by ★Tm 𝑠 and 𝑡 are equal terms at 𝐴
Abstracted judgement J ::= j judgement thesis|︁|︁ {𝑥:𝐴} J abstracted judgement (𝑥 bound in J)

Boundary thesis b ::= □ type a type|︁|︁ □ : 𝐴 a term of type 𝐴|︁|︁ 𝐴 ≡ 𝐵 by □ type equation boundary|︁|︁ 𝑠 ≡ 𝑡 : 𝐵 by □ term equation boundary
Abstracted boundary B ::= b boundary thesis|︁|︁ {𝑥:𝐴} B abstracted boundary (𝑥 bound in B)

Variable context Γ ::= [a1:𝐴1, . . . , a𝑛:𝐴𝑛]

Metavariable context Θ ::= [M1:B1, . . . ,M𝑛:B𝑛]

Hypothetical judgement Θ;Γ ⊢ J
Hypothetical boundary Θ;Γ ⊢ B

Figure 2.1: The raw syntax of expressions, boundaries and judgements.

38 CHAPTER 2. FINITARY TYPE THEORIES

Free variables:

fv(a) = {|a|} fv(𝑥) = {| |} fv({𝑥}𝑒) = fv(𝑒)
fv(S(𝑒1 . . . 𝑒𝑛)) = fv(𝑒1) ∪ · · · ∪ fv(𝑒𝑛)
fv(M(𝑡1 . . . 𝑡𝑛)) = fv(𝑡1) ∪ · · · ∪ fv(𝑡𝑛)

fv(𝐴 type) = fv(𝐴) fv(𝑡 : 𝐴) = fv(𝑡) ∪ fv(𝐴)
fv(𝐴 ≡ 𝐵 by ★) = fv(𝐴) ∪ fv(𝐵)

fv(𝑠 ≡ 𝑡 : 𝐴 by ★) = fv(𝑠) ∪ fv(𝑡) ∪ fv(𝐴)
fv({𝑥 : 𝐴} J) = fv(𝐴) ∪ fv(J)

fv(□ type) = {| |} fv(□ : 𝐴) = fv(𝐴)
fv(𝐴 ≡ 𝐵 by □) = fv(𝐴) ∪ fv(𝐵)

fv(𝑠 ≡ 𝑡 : 𝐴 by □) = fv(𝑠) ∪ fv(𝑡) ∪ fv(𝐴)
fv({𝑥 : 𝐴} B) = fv(𝐴) ∪ fv(B)

Bound variables:

bv(a) = {| |} bv(𝑥) = {|𝑥 |} bv({𝑥}𝑒) = bv(𝑒) \ {|𝑥 |}
bv(S(𝑒1 . . . 𝑒𝑛)) = bv(𝑒1) ∪ · · · ∪ bv(𝑒𝑛)
bv(M(𝑡1 . . . 𝑡𝑛)) = bv(𝑡1) ∪ · · · ∪ bv(𝑡𝑛)

Metavariables:

mv(a) = {| |} mv(𝑥) = {| |} mv({𝑥}𝑒) = mv(𝑒)
mv(S(𝑒1 . . . 𝑒𝑛)) = mv(𝑒1) ∪ · · · ∪ mv(𝑒𝑛)
mv(M(𝑡1 . . . 𝑡𝑛)) = {|M|} ∪ mv(𝑡1) ∪ · · · ∪ mv(𝑡𝑛)

mv(𝐴 type) = mv(𝐴) mv(𝑡 : 𝐴) = mv(𝑡) ∪ mv(𝐴)
mv(𝐴 ≡ 𝐵 by ★) = mv(𝐴) ∪ mv(𝐵)

mv(𝑠 ≡ 𝑡 : 𝐴 by ★) = mv(𝑠) ∪ mv(𝑡) ∪ mv(𝐴)
mv({𝑥:𝐴} J) = mv(𝐴) ∪ mv(J)

mv(□ type) = {| |} mv(□ : 𝐴) = mv(𝐴)
mv(𝐴 ≡ 𝐵 by □) = mv(𝐴) ∪ mv(𝐵)

mv(𝑠 ≡ 𝑡 : 𝐴 by □) = mv(𝑠) ∪ mv(𝑡) ∪ mv(𝐴)
mv({𝑥 : 𝐴} B) = mv(𝐴) ∪ mv(B)

Figure 2.2: Free, bound, and metavariable occurrences

2.1. FINITARY TYPE THEORIES 39

2.1.1.4 Judgements and boundaries

The bottom part of Fig. 2.1 displays the syntax of judgements and boundaries, which
we discuss next.
There are four judgement forms: “𝐴 type” asserts that 𝐴 is a type; “𝑡 : 𝐴” that 𝑡 is

a term of type 𝐴; “𝐴 ≡ 𝐵 by ★Ty” that types 𝐴 and 𝐵 are equal; and “𝑠 ≡ 𝑡 : 𝐴 by ★Tm”
that terms 𝑠 and 𝑡 of type 𝐴 are equal. We may shorten the equational forms to “𝐴 ≡ 𝐵”
and “𝑠 ≡ 𝑡 : 𝐴” in this chapter, as the only possible choice for by is ★.
Less familiar, but equally fundamental, is the notion of a boundary. Whereas

a judgement is an assertion, a boundary is a question to be answered, a promise to
be fulfilled, or a goal to be accomplished: “□ type” asks that a type be constructed;
“□ : 𝐴” that the type 𝐴 be inhabited; and “𝐴 ≡ 𝐵 by □” and “𝑠 ≡ 𝑡 : 𝐴 by □” that
equations be proved.
An abstracted judgement has the form {𝑥:𝐴} J, where 𝐴 is a type expression and

J is a (possibly abstracted) judgement. The variable 𝑥 is bound in J but not in 𝐴.
Thus in general an abstracted judgement has the form

{𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} j,

where j is a judgement thesis, i.e. an expression taking one of the four (non-abstracted)
judgement forms. We may abbreviate such an abstraction as {𝑥:�⃗�} j. Analogously,
an abstracted boundary has the form

{𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} b,

where b is a boundary thesis, i.e. it takes one of the four (non-abstracted) boundary
forms. The reason for introducing abstracted judgements and boundaries will be
explained shortly.
An abstracted boundary has the associated metavariable arity

ar({𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} b) = (𝑐, 𝑛)

where 𝑐 ∈ {Ty, Tm,EqTy,EqTm} is the syntactic class of b. Similarly, the associated
metavariable arity of an argument is

ar({𝑥1} · · · {𝑥𝑛}𝑒) = (𝑐, 𝑛)

where 𝑐 ∈ {Ty, Tm} is the syntactic class of the (non-abstracted) expression 𝑒.
The placeholder □ in a boundary B may be filled with an argument 𝑒, called the

head, to give a judgement B 𝑒 , provided that the arities of B and 𝑒 match. Because
equations are proof irrelevant, their placeholders can be filled uniquely with (suitably
abstracted) dummy value ★. Filling is summarized in Fig. 2.3, where we also include
notation for filling an object boundary with an equation that results in the corresponding
equation. The figure rigorously explicates the dummy values, but we usually omit
them. Filling may be inverted: given an abstracted judgement J there is a unique
abstracted boundary B and a unique argument 𝑒 such that J = B 𝑒 .

40 CHAPTER 2. FINITARY TYPE THEORIES

Filling the placeholder with a head:

(□ type) 𝐴 = (𝐴 type)
(□ : 𝐴) 𝑡 = (𝑡 : 𝐴)

(𝐴 ≡ 𝐵 by □) 𝑒 = (𝐴 ≡ 𝐵 by ★)
(𝑠 ≡ 𝑡 : 𝐴 by □) 𝑒 = (𝑠 ≡ 𝑡 : 𝐴 by ★)
({𝑥:𝐴} B) {𝑥}𝑒 = ({𝑥:𝐴} B 𝑒).

Filling the placeholder with an equality:

(□ type) 𝐴1 ≡ 𝐴2 by ★ = (𝐴1 ≡ 𝐴2 by ★),
(□ : 𝐴) 𝑡1 ≡ 𝑡2 by ★ = (𝑡1 ≡ 𝑡2 : 𝐴 by ★),

({𝑥:𝐴} B) 𝑒1 ≡ 𝑒2 by ★ = ({𝑥:𝐴} B 𝑒1 ≡ 𝑒2 by ★),

Figure 2.3: Filling the head of a boundary

Example 2.1.3. If the symbols A and Id have arities

(Ty, []), and (Ty, [(Ty, 0), (Tm, 0), (Tm, 0)]),

respectively, then the boundaries

{𝑥:A}{𝑦:A} □ : Id(A, 𝑥, 𝑦) and {𝑥:A}{𝑦:A} 𝑥 ≡ 𝑦 : A by □

may be filled with heads {𝑥}{𝑦}𝑥 and {𝑥}{𝑦}★ to yield abstracted judgements

{𝑥:A}{𝑦:A} 𝑥 : Id(A, 𝑥, 𝑦) and {𝑥:A}{𝑦:A} 𝑥 ≡ 𝑦 : A by ★.

Names of bound variables are immaterial, we would still get the same judgement if we
filled the left-hand boundary with {𝑢}{𝑣}𝑢 or {𝑦}{𝑥}𝑦, but not with {𝑥}{𝑦}𝑦.

Information about available metavariables is collected by a metavariable context,
which is a finite list Θ = [M1:B1, . . . ,M𝑛:B𝑛], also construed as a map, assigning to
each metavariable M𝑖 a boundary B𝑖. In Section 2.1.3, the assigned boundaries will
assign the typing of metavariable, while at the level of raw syntax they determine
metavariable arities. That is, Θ assigns the metavariable arity ar(B𝑖) to M𝑖 .
A metavariable context Θ = [M1:B1, . . . ,M𝑛:B𝑛] may be restricted to a metavari-

able context Θ(𝑖) = [M1:B1, . . . ,M𝑖−1:B𝑖−1].
The metavariable context Θ is syntactically well formed when each B𝑖 is a

syntactically well-formed boundary in the signature ⟨Σ,Θ(𝑖)⟩. In addition each B𝑖

must be closed, i.e. contain no free variables.
A variable context Γ = [a1:𝐴1, . . . , a𝑛:𝐴𝑛] over a metavariable context Θ is a

finite list of pairs written as a𝑖:𝐴𝑖. It is considered syntactically valid when the
variables a1, . . . , a𝑛 are all distinct, and for each 𝑖 the type expression 𝐴𝑖 is valid

2.1. FINITARY TYPE THEORIES 41

with respect to the signature and the metavariable arities assigned by Θ, and the
free variables occurring in 𝐴𝑖 are among a1, . . . , a𝑖−1. A variable context Γ yields
a finite map, also denoted Γ, defined by Γ(a𝑖) = 𝐴𝑖. The domain of Γ is the set
|Γ| = {a1, . . . , a𝑛}.
A context is a pair Θ;Γ consisting of a metavariable context Θ and a variable

context Γ over Θ. A syntactic entity is considered syntactically valid over a signature
and a context Θ;Γ when all symbol and metavariable applications respect the assigned
arities, the free variables are among |Γ|, and all bound variables are properly abstracted.
It goes without saying that we always require all syntactic entities to be valid in this
sense.
A (hypothetical) judgement has the form

Θ;Γ ⊢ J.

It differs from traditional notion of a judgement in a non-essential way, which
nevertheless requires an explanation. First, the context of a hypothetical judgement

Θ; a1:𝐴1, . . . , a𝑚:𝐴𝑚 ⊢ {𝑥1:𝐵1} · · · {𝑥𝑚:𝐵𝑚} j

provides information about metavariables, not just the free variables. Second, the
variables are split between the context a1:𝐴1, . . . , a𝑛:𝐴𝑛 on the left of ⊢, and the
abstraction {𝑥1:𝐵1} · · · {𝑥𝑚:𝐵𝑚} on the right. It is useful to think of the former as the
global hypotheses that interact with other judgements, and the latter as local to the
judgement. We could of course delegate the metavariable context to be part of the
signature as is done in (Bauer, Haselwarter and Lumsdaine 2020), and revert to the
more familiar form

a1:𝐴1, . . . , a𝑛:𝐴𝑛, 𝑥1:𝐵1, . . . , 𝑥𝑚:𝐵𝑚 ⊢ j

by joining the variable context and the abstraction, but we would still have to carry the
metavariable information in the signature, and would lose the ability to explicitly mark
the split between the global and the local parts. The split will be especially important
in Section 3.1, where the context will be removed, but the abstraction kept.

Hypothetical boundaries are formed in the same fashion, as

Θ;Γ ⊢ B.

The intended meaning is that B is a well-typed boundary in context Θ;Γ.

2.1.1.5 Metavariable instantiations

Metavariables are slots that can be instantiated with arguments. Suppose Θ =

⟨M1:B1, . . . ,M𝑘 :B𝑘⟩ is a metavariable context over a signature Σ. An instantiation
of Θ over a context Ξ;Γ is a seqence 𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑘 ↦→𝑒𝑘⟩, representing a map
that takes each M𝑖 to an argument 𝑒𝑖 over Θ;Γ such that ar(B𝑖) = ar(𝑒𝑖).
An instantiation 𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑘 ↦→𝑒𝑘⟩ of Θ may be restricted to an instanti-

ation 𝐼 (𝑖) = ⟨M1 ↦→𝑒1, . . . ,M𝑖−1 ↦→𝑒𝑖−1⟩ of Θ(𝑖) .

42 CHAPTER 2. FINITARY TYPE THEORIES

An instantiation 𝐼 of Θ over Ξ;Γ acts on an expression 𝑒 over Θ;Γ to give an
expression 𝐼∗𝑒 over Ξ;Γ in which the metavariables are replaced by the corresponding
expressions, as follows:

𝐼∗𝑥 = 𝑥, 𝐼∗a = a, 𝐼∗★ = ★, 𝐼∗({𝑥}𝑒) = {𝑥}(𝐼∗𝑒),
𝐼∗(S(𝑒1, . . . , 𝑒𝑛)) = S(𝐼∗𝑒1, . . . , 𝐼∗𝑒𝑛),
𝐼∗(M𝑖 (𝑡1, . . . , 𝑡𝑛)) = 𝑒𝑖 [(𝐼∗𝑡1)/𝑥1, . . . , (𝐼∗𝑡𝑛𝑖)/𝑥𝑛𝑖] .

Abstracted judgements and boundaries may be instantiated too:

𝐼∗(𝐴 type) = (𝐼∗𝐴 type), 𝐼∗(𝑡 : 𝐴) = (𝐼∗𝑡 : 𝐼∗𝐴),
𝐼∗(𝐴 ≡ 𝐵 by ★) = (𝐼∗𝐴 ≡ 𝐼∗𝐵 by ★), 𝐼∗({𝑥:𝐴} J) = {𝑥:𝐼∗𝐴} 𝐼∗J,

and by imagining that 𝐼∗□ = □, the reader can tell how to instantiate a boundary.
Finally, a hypothetical judgement Θ;Γ ⊢ J may be instantiated to Ξ; 𝐼∗Γ ⊢ 𝐼∗J, and
similarly for a hypothetical boundary.

2.1.2 Deductive systems

We briefly recall the notions of a deductive system, derivability, and a derivation tree;
see for example (Aczel 1977) for an introduction. A (finitary) closure rule on a set 𝑆
is a pair ([𝑝1, . . . , 𝑝𝑛], 𝑞), also displayed as

𝑝1 · · · 𝑝𝑛
𝑞

,

where {𝑝1, . . . , 𝑝𝑛} ⊆ 𝑆 are the premises and 𝑞 ∈ 𝑆 is the conclusion. Let Clos(𝑆)
be the set of all closure rules on 𝑆.
A deductive system (also called a closure system) on a set 𝑆 is a family of

closure rules 𝐶 : 𝑅 → Clos(𝑆), indexed by a set 𝑅 of rule names. A set 𝐷 ⊆ 𝑆 is
said to be deductively closed for 𝐶 when, for all 𝑖 ∈ 𝑅, if 𝐶𝑖 = ([𝑝1, . . . , 𝑝𝑛], 𝑞)
and {𝑝1, . . . , 𝑝𝑛} ⊆ 𝐷, then 𝑞 ∈ 𝐷. The associated closure operator is the map
P𝑆 → P𝑆 which takes 𝐷 ⊆ 𝑆 to the least deductively closed supserset 𝐷 of 𝐷, which
exists by Tarski’s fixed-point theorem (Tarski 1955). We say that 𝑞 ∈ 𝑆 is derivable
from hypotheses 𝐻 ⊆ 𝑆 when 𝑞 ∈ 𝐻, and that it is derivable in 𝐶 when 𝑞 ∈ ∅.
A closure rule ([𝑝1, . . . , 𝑝𝑛], 𝑞) is admissible for 𝐶 when 𝑞 ∈ {𝑝1, . . . , 𝑝𝑛}.

That is, adjoining an admissible closure rule to a closure system has no effect on its
associated closure operator.
Derivability is witnessed by well-founded trees, which are constructed as follows.

For each 𝑞 ∈ 𝑆 let Der𝐶 (𝑞) be generated inductively by the clause (where der is a
formal tag):

• for every 𝑖 ∈ 𝑅, if𝐶𝑖 = ([𝑝1, . . . , 𝑝𝑛], 𝑞) and 𝑡 𝑗 ∈ Der𝐶 (𝑝 𝑗) for all 𝑗 = 1, . . . , 𝑛,
then der𝑖 (𝑡1, . . . , 𝑡𝑛) ∈ Der𝐶 (𝑞).

2.1. FINITARY TYPE THEORIES 43

The elements of Der𝐶 (𝑞) are derivation trees with conclusion 𝑞. Indeed, we may
view der𝑖 (𝑡1, . . . , 𝑡𝑛) as tree with the root labeled by 𝑖 and the subtrees 𝑡1, . . . , 𝑡𝑛. A
leaf is a tree of the form der 𝑗 (), which arises when the corresponding closure rule 𝐶 𝑗

has no premises.

Proposition 2.1.4. Given a closure system 𝐶 on 𝑆, an element 𝑞 ∈ 𝑆 is derivable in 𝐶
if, and only if, there exists a derivation tree over 𝐶 whose conclusion is 𝑞.

Proof. The claim is that 𝑇 = {𝑞 ∈ 𝑆 | ∃𝑡 ∈ Der𝐶 (𝑞) .⊤} coincides with 𝐶. The
inclusion 𝐶 ⊆ 𝑇 holds because 𝑇 is deductively closed. The reverse inclusion 𝑇 ⊆ 𝐶
is established by induction on derivation trees. □

We remark that allowing infinitary closure rules brings with it the need for the
axiom of choice, for it is unclear how to prove that 𝑇 is deductively closed without the
aid of choice.
It is evident that derivability and derivation trees are monotone in all arguments:

if 𝑆 ⊆ 𝑆′, 𝑅 ⊆ 𝑅′, and the closure system 𝐶 ′ : 𝑅′ → Clos(𝑆′) restricts to 𝐶 : 𝑅 →
Clos(𝑆), then any 𝑞 ∈ 𝑆 derivable in 𝐶 is also derivable in 𝐶 ′ as an element of 𝑆′.
Moreover, any derivation tree in Der𝐶 (𝑞) may be construed as a derivation tree in
Der𝐶′ (𝑞).
Henceforth we shall consider solely deductive systems on the set of hypothetical

judgements and boundaries. Because we shall vary the deductive system, it is useful
to write Θ;Γ ⊢𝐶 J when (Θ;Γ ⊢ J) ∈ 𝐶, and similarly for Θ;Γ ⊢𝐶 B.

2.1.3 Raw rules and type theories

A type theory in its basic form is a collection of closure rules. Some closure rules
are specified directly, but many are presented by inference rules – templates whose
instantiations yield the closure rules. We deal with the raw syntactic structure of such
rules first.

Definition 2.1.5. A raw rule over a signature Σ is a hypothetical judgement over Σ of
the form Θ; [] ⊢ j. We notate such a raw rule as

Θ =⇒ j.

The elements of Θ are the premises and j is the conclusion. We say that the rule is an
object rule when j is a type or a term judgement, and an equality rule when j is an
equality judgement.

Defining inference rules as hypothetical judgements with empty contexts and empty
abstractions permits in many situations uniform treatment of rules and judgements.
Note that the premises and the conclusion may not contain any free variables, and that
the conclusion must be non-abstracted. Neither condition impedes expressivity of raw
rules, because free variables and abstractions may be promoted to premises.

44 CHAPTER 2. FINITARY TYPE THEORIES

Example 2.1.6. To help the readers’ intuition, let us see how Definition 2.1.5 captures
a traditional inference rule, such as product formation

Ty-Π
⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ Π(A, {𝑥}B(𝑥)) type

The use of A and B in the premises reveals that their arities are (Ty, 0), and (Ty, 1),
respectively. In fact, the premises assign boundaries to metavariables, namely each
metavariable, applied generically, is the head of its boundary. If we pull out the
metavariables from the heads of premises, the assignment becomes explicit:

A : (□ type) B : ({𝑥:A} □ type)
Π(A, {𝑥}B(𝑥)) type

This is just a different way of writing the raw rule

A:(□ type), B:({𝑥:𝐴} □ type) =⇒ Π(A, {𝑥}B(𝑥)) type.

Example 2.1.7. We may translate raw rules back to their traditional form by filling
the heads with metavariables applied generically. For example, the reader may readily
verify that the raw rule

A:(□ type), s:(□ : A), t:(□ : A), p:(□ : Id(A, s, t)) =⇒ s ≡ t : A by ★

corresponds to the equality reflection rule of extensional type theory that is traditionally
written as

Eq-Reflect
⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)

⊢ s ≡ t : A

For everyone’s benefit, we shall display raw rules in traditional form, but use Defini-
tion 2.1.5 when formalities demand so.

It may be mystifying that there is no variable context Γ in a raw rule, for is it not
the case that rules may be applied in arbitrary contexts? Indeed, closure rules have
contexts, but raw rules do not because they are just templates. The context appears
once we instantiate the template, as follows.

Definition 2.1.8. An instantiation of a raw rule 𝑅 = (M1:B1, . . . ,M𝑛:B𝑛 =⇒ b 𝑒)
over a signature Σ and context Θ;Γ is an instantiation 𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩ of
its premises over Θ;Γ. The associated closure rule 𝐼∗𝑅 is ([𝑝1, . . . , 𝑝𝑛, 𝑞], 𝑟) where
𝑝𝑖 is Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 , 𝑞 is Θ;Γ ⊢ 𝐼∗b, and 𝑟 is Θ;Γ ⊢ 𝐼∗(b 𝑒).

We included among the premises the well-formedness of the instantiated boundary
Θ;Γ ⊢ 𝐼∗b, so that the conclusion is well-formed. We need the premise as an induction
hypothesis in the proof of Theorem 2.2.18. In Section 2.2.2 we shall formulate
well-formedness conditions that allow us to drop the boundary premise.
Of special interest are the rules that give type-theoretic meaning to primitive

symbols. To define them, we need the boundary analogue of raw rules.

2.1. FINITARY TYPE THEORIES 45

Definition 2.1.9. A raw rule-boundary over a signature Σ is a hypothetical boundary
over Σ of the form Θ; [] ⊢ b. We notate such a raw rule-boundary as

Θ =⇒ b.

The elements of Θ are the premises and b is the conclusion boundary. We say that
the rule-boundary is an object rule-boundary when b is a type or a term boundary,
and an equality rule-boundary when b is an equality boundary.

Here is how a rule-boundary generates a rule associated to a symbol.

Definition 2.1.10. Given a raw object rule-boundary

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b

over Σ, the associated symbol arity is (𝑐, [ar(B1), . . . , ar(B𝑛)]), where 𝑐 ∈ {Ty, Tm}
is the syntactic class of b. The associated symbol rule for S ∉ |Σ| is the raw rule

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b [S(ˆ︁M1, . . . , ˆ︁M𝑛)]

over the extended signature ⟨Σ, S ↦→(𝑐, [ar(B1), . . . , ar(B𝑛)])⟩, where ˆ︁M is the generic
application of the metavariable M with associated boundary B, defined as:

1. ˆ︁𝑀 = {𝑥1} · · · {𝑥𝑘 }M(𝑥1, . . . , 𝑥𝑘) if ar(B) = (𝑐, 𝑘) and 𝑐 ∈ {Ty, Tm},

2. ˆ︁𝑀 = {𝑥1} · · · {𝑥𝑘 }★ if ar(B) = (𝑐, 𝑘) and 𝑐 ∈ {EqTy,EqTm}.

A raw rule is said to be a symbol rule if it is the associated symbol rule for some
symbol S.

The above definition separates the rule-boundary from the head of the conclusion
because the latter can be calculated from the former. It would be less economical to
define a symbol rule directly as a raw rule, as we would still have to verify that the
supplied head is the expected one. In examples we shall continue to display symbol
rules in their traditional form.

Example 2.1.11. According to Definition 2.1.10, the symbol rule for Π is generated
by the rule-boundary

⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ □ type
Indeed, the associated symbol rule for Π is

⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ Π(A, {𝑥}B(𝑥)) type

We allow equational premises in object rules. For example,
Refl’
⊢ A type ⊢ s : A ⊢ t : A ⊢ s ≡ t : A

⊢ refl(A, s, t, ★) : Id(A, s, t)

is a valid symbol rule, assuming Id and refl have their usual arities.

46 CHAPTER 2. FINITARY TYPE THEORIES

We also record the analogous construction of an equality rule from a given equality
rule-boundary.

Definition 2.1.12. Given an equality rule-boundary

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b,

the associated equality rule is

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b★.

We next formulate the rules that all type theories share, starting with the most
nitty-gritty ones, the congruence rules.

Definition 2.1.13. The congruence rules associated with a raw object rule 𝑅

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b 𝑒

are closure rules, with

𝐼 = ⟨M1 ↦→ 𝑓1, . . . ,M𝑛 ↦→ 𝑓𝑛⟩ and 𝐽 = ⟨M1 ↦→𝑔1, . . . ,M𝑛 ↦→𝑔𝑛⟩,

of the form
Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ ⊢ (𝐽(𝑖)∗B𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔𝑖 for object boundary B𝑖

Θ;Γ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵 if b = (□ : 𝐵)
Θ;Γ ⊢ (𝐼∗b) 𝐼∗𝑒 ≡ 𝐽∗𝑒

In case of a term equation at type 𝐵, the congruence rule has the additional premise
Θ;Γ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵, which ensures that the right-hand side of the conclusion 𝐽∗𝑒 has
type 𝐼∗𝐵. Having the equation avaliable as a premise allows us to use it in the inductive
proof of Theorem 2.2.18. In Section 2.2.2 we show that the rule without the premises
is admissible under suitable conditions.

Example 2.1.14. The congruence rule associated with the product formation rule
from Example 2.1.6 is

Θ;Γ ⊢ 𝐴1 type Θ;Γ ⊢ {𝑥:𝐴1} 𝐵1 type

Θ;Γ ⊢ 𝐴2 type Θ;Γ ⊢ {𝑥:𝐴2} 𝐵2 type

Θ;Γ ⊢ 𝐴1 ≡ 𝐴2 Θ;Γ ⊢ {𝑥:𝐴1} 𝐵1 ≡ 𝐵2
Θ;Γ ⊢ Π(𝐴1, {𝑥}𝐵1) ≡ Π(𝐴2, {𝑥}𝐵2)

(2.1)

Next we have formation and congruence rules for the metavariables. As metavari-
ables are like symbols whose arguments are terms, it is not suprising that their rules
are quite similar to symbol rules.

2.1. FINITARY TYPE THEORIES 47

Definition 2.1.15. Given a context Θ;Γ over Σ with Θ = [M1:B1, . . . ,M𝑛:B𝑛], and
B𝑘 = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b), the metavariable rules for M𝑘 are the closure rules of
the form

TT-Meta
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b
Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ b [�⃗�/𝑥]
Θ;Γ ⊢ (b [�⃗�/𝑥])M𝑘 (�⃗�)

where 𝑥 = (𝑥1, . . . , 𝑥𝑚) and �⃗� = (𝑡1, . . . , 𝑡𝑚). Furthermore, if b is an object boundary,
then the metavariable congruence rules for M𝑘 are the closure rules of the form

TT-Meta-Congr
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b
Θ;Γ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)
Θ;Γ ⊢ (b [�⃗�/𝑥])M𝑘 (�⃗�) ≡ M𝑘 (�⃗�)

where �⃗� = (𝑠1, . . . , 𝑠𝑚) and �⃗� = (𝑡1, . . . , 𝑡𝑚).

We are finally ready to give a definition of type theory which is sufficient for
explaining derivability.

Definition 2.1.16. A raw type theory 𝑇 over a signature Σ is a family of raw rules
over Σ, called the specific rules of 𝑇 . The associated deductive system of 𝑇 consists
of:

1. the structural rules over Σ:

a) the variable, metavariable, metavariable congruence, and abstraction
closure rules (Fig. 2.4),

b) the equality closure rules, (Fig. 2.5),

c) the boundary closure rules (Fig. 2.6);

2. the instantiations of the specific rules of 𝑇 (Definition 2.1.8);

3. for each specific object rule of 𝑇 , the instantiations of the associated congruence
rule (Definition 2.1.13).

We write Γ ⊢𝑇 J when Γ ⊢ J is derivable with respect to the deductive system
associated to 𝑇 , and similarly for Γ ⊢𝑇 B.

48 CHAPTER 2. FINITARY TYPE THEORIES

TT-Var
a ∈ |Γ|

Θ;Γ ⊢ a : Γ(a)

TT-Meta
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b
Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ b [�⃗�/𝑥]
Θ;Γ ⊢ (b [�⃗�/𝑥]) M𝑘 (�⃗�)

TT-Meta-Congr
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b
Θ;Γ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)
Θ;Γ ⊢ (b [�⃗�/𝑥]) M𝑘 (�⃗�) ≡ M𝑘 (�⃗�)

TT-Abstr
Θ;Γ ⊢ 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ⊢ J[a/𝑥]

Θ;Γ ⊢ {𝑥:𝐴} J

Figure 2.4: Variable, metavariable and abstraction closure rules

TT-EqTy-Refl
Θ;Γ ⊢ 𝐴 type
Θ;Γ ⊢ 𝐴 ≡ 𝐴

TT-EqTy-Sym
Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝐵 ≡ 𝐴

TT-EqTy-Trans
Θ;Γ ⊢ 𝐴 ≡ 𝐵 Θ;Γ ⊢ 𝐵 ≡ 𝐶

Θ;Γ ⊢ 𝐴 ≡ 𝐶

TT-EqTm-Refl
Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ 𝑡 ≡ 𝑡 : 𝐴

TT-EqTm-Sym
Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴
Θ;Γ ⊢ 𝑡 ≡ 𝑠 : 𝐴

TT-EqTm-Trans
Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴

Θ;Γ ⊢ 𝑠 ≡ 𝑢 : 𝐴

TT-Conv-Tm
Θ;Γ ⊢ 𝑡 : 𝐴 Θ;Γ ⊢ 𝐴 ≡ 𝐵

Θ;Γ ⊢ 𝑡 : 𝐵

TT-Conv-EqTm
Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ⊢ 𝐴 ≡ 𝐵

Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐵

Figure 2.5: Equality closure rules

2.1. FINITARY TYPE THEORIES 49

TT-Bdry-Ty

Θ;Γ ⊢ □ type

TT-Bdry-Tm
Θ;Γ ⊢ 𝐴 type
Θ;Γ ⊢ □ : 𝐴

TT-Bdry-EqTy
Θ;Γ ⊢ 𝐴 type Θ;Γ ⊢ 𝐵 type

Θ;Γ ⊢ 𝐴 ≡ 𝐵 by □

TT-Bdry-EqTm
Θ;Γ ⊢ 𝐴 type Θ;Γ ⊢ 𝑠 : 𝐴 Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 by □

TT-Bdry-Abstr
Θ;Γ ⊢ 𝐴 type a ∉ |Γ| Γ, a:𝐴 ⊢ B[a/𝑥]

Θ;Γ ⊢ {𝑥:𝐴} B

Figure 2.6: Well-formed abstracted boundaries

Ext-Empty

⊢ [] mctx

Ext-Extend
⊢ Θ mctx Θ; [] ⊢ B M ∉ |Θ|

⊢ ⟨Θ,M:B⟩ mctx

Ctx-Empty

Θ ⊢ [] vctx

Ctx-Extend
Θ ⊢ Γ vctx Θ;Γ ⊢ 𝐴 type a ∉ |Γ|

Θ ⊢ (Γ, a:𝐴) vctx

Figure 2.7: Well-formed metavariable and variable contexts

Several remarks are in order regarding the above definition and the rules in Figs. 2.4
to 2.6:

1. It is assumed throughout that all the entities involved are syntactically valid, i.e.
that arities are respected and variables are well-scoped.

2. The metavariable rules TT-Meta and TT-Meta-Congr are exactly as in Defini-
tion 2.1.15.

3. The rules TT-Var, TT-Meta, and TT-Abstr contain side-conditions, such as
a ∈ |Γ| and Θ(M) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b. For purely aesthetic reasons, these
are written where premises ought to stand. For example, the correct way to
read TT-Abstr is: “For all Θ, Γ, 𝐴, a, J, if a ∉ |Γ|, then there is a closure
rule with premises Θ;Γ ⊢ 𝐴 type and Θ;Γ, a:𝐴 ⊢ J[a/𝑥], and the conclusion
Θ;Γ ⊢ {𝑥:𝐴} J.”

4. The structural rules impose no well-typedness conditions on contexts. Instead,
Fig. 2.7 provides two auxiliary judgement forms, “⊢ Θ mctx” and “Θ ⊢ Γ vctx”,
stating that Θ is a well-typed metavariable context, and Γ a well-typed variable

50 CHAPTER 2. FINITARY TYPE THEORIES

context over Θ, respectively. These will be used as necessary. Note that
imposing the additional premise Θ;Γ ⊢ Γ(a) type in TT-Var would not ensure
well-formednes of Γ, as not all variables need be accessed in a derivation.
Requiring that TT-Meta check the boundary of the metavariable is similarly
ineffective.

5. We shall show in Section 2.2.1 that substitution rules (Fig. 2.8) are admissible.

This may be a good moment to record the difference between derivability and
admissibility.

Definition 2.1.17. Consider a raw theory 𝑇 and a raw rule 𝑅, both over a signature Σ:

1. 𝑅 is derivable in 𝑇 when it has a derivation in 𝑇 .

2. 𝑅 is admissible in 𝑇 when, for every instantiation 𝐼 of 𝑅, the conclusion of 𝐼∗𝑅
is derivable in 𝑇 from the premises of 𝐼∗𝑅.

2.1.4 Finitary rules and type theories

Raw rules are syntactically well-behaved: the premises and the conclusion are
syntactically well-formed entities, and all metavariables, free variable and bound
variables well-scoped. Nevertheless, a raw rule may be ill-formed for type-theoretic
reasons, a deficiency rectified by the next definition.
Recall that a well-founded order on a set 𝐼 is an irreflexive and transitive relation ≺

satisfying, for each 𝑆 ⊆ 𝐼,

(∀𝑖 ∈ 𝐼 . (∀ 𝑗 ≺ 𝑖 . 𝑗 ∈ 𝑆) ⇒ 𝑖 ∈ 𝑆) ⇒ 𝑆 = 𝐼 .

The logical reading of the above condition is an induction principle: in order to show
∀𝑥 ∈ 𝐼 . 𝜙(𝑥) one has to prove, for any 𝑖 ∈ 𝐼, that 𝜙(𝑖) holds assuming that 𝜙(𝑗) does
for all 𝑗 ≺ 𝑖.

Definition 2.1.18. Given a raw theory 𝑇 over a signature Σ, a raw rule Θ =⇒ b 𝑒 over
Σ is finitary over 𝑇 when ⊢𝑇 Θ mctx and Θ; [] ⊢𝑇 b. Similarly, a raw rule-boundary
Θ =⇒ b is finitary when ⊢𝑇 Θ mctx and Θ; [] ⊢𝑇 b.
A finitary type theory is a raw type theory (𝑅𝑖)𝑖∈𝐼 for which there exists a

well-founded order (𝐼, ≺) such that each 𝑅𝑖 is finitary over (𝑅 𝑗) 𝑗≺𝑖 .

Example 2.1.19. We take stock by considering several examples of rules. The rule

Unique-Ty
⊢ A type ⊢ B type ⊢ t : A type ⊢ t : B type

⊢ A ≡ B

2.1. FINITARY TYPE THEORIES 51

is not raw because it introduces the metavariable t twice. Assuming Π has arity
(Ty, [(Ty, 0), (Ty, 1)]), consider the rules

Ty-Π-Short
⊢ {𝑥:A} B(𝑥) type

⊢ Π(A, {𝑥}B(𝑥))

Ty-Π-Long
⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ Π(A, {𝑥}B(𝑥))

The rule Ty-Π-Short is not raw because it fails to introduce the metavariable A, while
Ty-Π-Long is finitary over any theory. The rule

Succ-Congr-Typo
⊢ m : nat ⊢ n : bool ⊢ m ≡ n : nat

⊢ succ(m) ≡ succ(n) : nat

is raw when the symbols bool, nat, and succ respectively have arities (Ty, []), (Ty, []),
and (Tm, [(Tm, 0)]). Whether it is also finitary depends on a theory. For instance,
given the raw rules

Ty-Bool

⊢ bool type

Ty-Nat

⊢ nat type

Tm-Succ
⊢ n : nat

⊢ succ(n) : nat

Bool-Eq-Nat

⊢ bool ≡ nat

the rule Succ-Congr-Typo is not finitary over the first three rules, but is finit-
ary over all four of them. As a last example, given the symbol Id with arity
(Ty, [(Ty, 0), (Tm, 0), (Tm, 0)]), the rules

Ty-Id
⊢ A type ⊢ s : A ⊢ t : A

⊢ Id(A, s, t) type

Ty-Id-Typo
⊢ A type ⊢ s : A ⊢ t : A

⊢ Id(A, s, s) type

Eq-Reflect
⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)

⊢ s ≡ t : A

are all raw, both Ty-Id and Ty-Id-Typo are finitary over an empty theory, while
Eq-Reflect is finitary over a theory containing Ty-Id. The rule Ty-Id is a symbol
rule, but Ty-Id-Typo does not.

Could we have folded Definition 2.1.5 of raw rules and Definition 2.1.18 of finitary
rules into a single definition? Not easily, as that would generate a loop: finitary rules
refer to theories and derivability, which refer to closure rules, which are generated
from raw rules. Without a doubt something is to be learned by transforming the cyclic
dependency to an inductive definition, but we do not attempt to do so here.
A finitary type theory is fairly well behaved from a type-theoretic point of view, but

can still suffer from unusual finitary rules, such as Ty-Id-Typo from Example 2.1.19,
which looks like a spelling mistake. We thus impose a further restriction by requiring
that every rule be either a symbol rule or an equality rule.

52 CHAPTER 2. FINITARY TYPE THEORIES

Definition 2.1.20. A finitary type theory is standard if its specific object rules are
symbol rules, and each symbol has precisely one associated rule.

A standard type theory and its signature may be built iteratively as follows:

1. The empty theory is standard over the empty signature.

2. Given a standard type theory 𝑇 over Σ, and a rule-boundary

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b

finitary for 𝑇 :

• If b is an object boundary, and S ∉ |Σ|, then 𝑇 extended with the associated
symbol rule

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b S(ˆ︁M1, . . . , ˆ︁M𝑛)

is standard over the extended signature ⟨Σ,S↦→𝛼⟩, where 𝛼 is the symbol
arity associated with the rule-boundary.

• If b is an equation boundary, then 𝑇 extended with the equality rule

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b★

is standard over Σ.

A more elaborate well-founded induction may be employed when a theory features
infinitely many rules, such as an infinite succession of universes.

2.2 Metatheorems
We put our definitions to the test by proving metatheorems which stipulate desirable
structural properties of type theories. The theorems are all rather standard and expected,
and so are their proofs. Nevertheless, we prove them to verify that our definition of
type theories is sensible, and to provide general-purpose metatheorems that apply in a
wide range of situations.

2.2.1 Metatheorems about raw theories

A renaming of an expression 𝑒 is an injective map 𝜌 with domain mv(𝑒) ∪ fv(𝑒) that
takes metavariables to metavariables and free variables to free variables. The renaming
acts on 𝑒 to yield an expression 𝜌∗𝑒 by replacing each occurrence of a metavariable M
and a free variable a with 𝜌(M) and 𝜌(a), respectively. We similarly define renamings
of contexts, judgements, and boundaries.

Proposition 2.2.1 (Renaming). If a raw type theory derives a judgement or a boundary,
then it also derives its renaming.

2.2. METATHEOREMS 53

Proof. Let 𝜌 be a renaming of a derivable judgement Θ;Γ ⊢ J. We show that
𝜌∗Θ; 𝜌∗Γ ⊢ 𝜌∗J is derivable by induction on the derivation. The case of boundaries is
similar.
Most cases only require a direct application of the induction hypotheses to the

premises. The only somewhat interesting case is TT-Abstr,

Θ;Γ ⊢ 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ⊢ J[a/𝑥]
Θ;Γ ⊢ {𝑥:𝐴} J

As a ∉ |Γ|, and thus a ∉ |𝜌 |, we may extend 𝜌 to a renaming 𝜌′ = ⟨𝜌, a ↦→b⟩, where b is
such that b ∉ |𝜌∗Γ|. By induction hypothesis for the first premise, 𝜌∗Θ; 𝜌∗Γ ⊢ 𝜌∗𝐴 type
is derivable. We apply the induction hypothesis for the second premise to 𝜌′ and
obtain 𝜌′∗Θ; 𝜌′∗(Γ, a:𝐴) ⊢ 𝜌′∗(J[a/𝑥]), which equals 𝜌∗Θ; 𝜌∗Γ, b:𝜌∗𝐴 ⊢ (𝜌∗J) [b/𝑥].
Thus, we may conclude by TT-Abstr,

𝜌∗Θ; 𝜌∗Γ ⊢ (𝜌∗𝐴) type b ∉ |𝜌∗Γ| 𝜌∗Θ; 𝜌∗Γ, b:𝜌∗𝐴 ⊢ (𝜌∗J) [b/𝑥]
𝜌∗Θ; 𝜌∗Γ ⊢ {𝑥:𝜌∗𝐴} 𝜌∗J □

Proposition 2.2.2 (Weakening). For a raw type theory:

1. If Θ;Γ1, Γ2 ⊢ J and a ∉ |Γ1, Γ2 | then Θ;Γ1, a:𝐴, Γ2 ⊢ J.

2. If Θ1,Θ2;Γ ⊢ J and M ∉ |Θ1,Θ2 | then Θ1,M:B,Θ2;Γ ⊢ J.

An analogous statement holds for boundaries.

Proof. Once again we proceed by induction on the derivation of the judgement in
a straightforward manner, where the case TT-Abstr relies on renaming (Proposi-
tion 2.2.1) to ensure that a remains fresh in the subderivations. □

In several placeswe shall require well-formedness of contexts, a useful consequence
of which we record first.

Proposition 2.2.3. If a raw type theory derives ⊢ Θ mctx then it derives Θ; [] ⊢ Θ(M)
for every M ∈ |Θ|; and if it derives Θ ⊢ Γ vctx, then it derives Θ;Γ ⊢ Γ(a) type for
every a ∈ |Γ|.

Proof. By induction on the derivation of ⊢ Θ mctx and Θ ⊢ Γ vctx, respectively,
followed by weakening. □

2.2.1.1 Admissibility of substitution

In this section we prove that in a raw type theory substitution is admissible, and that
substitution preserves judgemental equality.

Lemma 2.2.4. If a raw type theory derives Θ;Γ, a:𝐴,Δ ⊢ J and Θ;Γ ⊢ 𝑡 : 𝐴 then it
derives Θ;Γ,Δ[𝑡/a] ⊢ J[𝑡/a].

54 CHAPTER 2. FINITARY TYPE THEORIES

Proof. We proceed by induction on the derivation of the judgement. The induction is
mutual with the corresponding statement for boundaries, Lemma 2.2.5.
Case TT-Var: If the derivation ends with the variable rule for a then we apply
weakening to Θ;Γ ⊢ 𝑡 : 𝐴 to get Θ;Γ,Δ[𝑡/a] ⊢ 𝑡 : 𝐴. For other variables, we apply
the variable rule for the same variable.
Case TT-Abstr: Consider a derivation which ends with an abstraction

Θ;Γ, a:𝐴,Δ ⊢ 𝐵 type b ∉ |Γ, a:𝐴,Δ| Θ;Γ, a:𝐴,Δ, b:𝐵 ⊢ J[b/𝑥]
Θ;Γ, a:𝐴,Δ ⊢ {𝑥:𝐵} J

The induction hypotheses for the premises yield

Θ;Γ,Δ[𝑡/a] ⊢ 𝐵[𝑡/a] type and Θ;Γ,Δ[𝑡/a], b:𝐵[𝑡/a] ⊢ (J[b/𝑥]) [𝑡/a] .

Note that (J[b/𝑥]) [𝑡/a] = (J[𝑡/a]) [b/𝑥], because 𝑥 ∉ bv(𝑡) as 𝑡 is closed, and a ≠ b
by assumption. Hence abstracting b in the second premise yields

Θ;Γ,Δ[𝑡/a] ⊢ {𝑥:𝐵[𝑡/a]} J[𝑡/a],

as desired.
Case TT-Meta and TT-Meta-Congr: We only consider the congruence rules, as
the metavariable rule is treated similarly. Consider a derivation which ends with the
congruence rule for a metavariable M whose boundary is Θ(M) = {𝑥:�⃗�} b:

Θ;Γ, a:𝐴,Δ ⊢ 𝑠 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚
Θ;Γ, a:𝐴,Δ ⊢ 𝑡 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ, a:𝐴,Δ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚
Θ;Γ, a:𝐴,Δ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = □ : 𝐶

Θ;Γ, a:𝐴,Δ ⊢ (b [�⃗�/𝑥])M(�⃗�) ≡ M(�⃗�)

We apply the induction hypotheses to the premises, and conclude by TT-Meta-
Congr for M, applied to �⃗�[a/𝑥] and �⃗� [a/𝑥], taking into account that in general
(𝑒[𝑢/𝑥]) [𝑣/a] = (𝑒[𝑣/a]) [𝑢[𝑣/a]/𝑥].
Case of a specific rule: Consider a derivation ending with the application of
a raw rule 𝑅 = (M1:B1, . . . ,M𝑛:B𝑛 =⇒ j) with j = b 𝑒 , instantiated by 𝐼 =

⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩,

Θ;Γ, a:𝐴,Δ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛
Θ;Γ, a:𝐴,Δ ⊢ 𝐼∗b
Θ;Γ, a:𝐴,Δ ⊢ 𝐼∗j

The induction hypotheses for the premises yield, for 𝑖 = 1, . . . , 𝑛,

Θ;Γ,Δ[𝑡/a] ⊢ ((𝐼 (𝑖)∗B𝑖) 𝑒𝑖) [𝑡/a],

2.2. METATHEOREMS 55

which equals
Θ;Γ,Δ[𝑡/a] ⊢ (𝐼 [𝑡/a] (𝑖)∗B𝑖) 𝑒𝑖 [𝑡/a] .

By Lemma 2.2.5, we further obtain Θ;Γ,Δ ⊢ (𝐼 [𝑡/a])∗b. Now apply 𝑅 instantiated at
𝐼 [𝑡/𝑎] = ⟨M1 ↦→𝑒1 [𝑡/a], . . . ,M𝑛 ↦→𝑒𝑛 [𝑡/a]⟩ to derive Θ;Γ,Δ[𝑡/a] ⊢ 𝐼 [𝑡/𝑎]∗j, which
equals Θ;Γ,Δ[𝑡/a] ⊢ (𝐼∗j) [𝑡/a].
Case of a congruence rule: Apply the induction hypotheses to the premises and
conclude by the same rule.

Cases TT-EqTy-Refl, TT-EqTy-Sym, TT-EqTy-Trans, TT-EqTm-Refl, TT-EqTm-
Sym, TT-EqTm-Trans, TT-Conv-Tm, TT-Conv-EqTm: These cases are dispensed
with, once again, by straightforward applications of the induction hypotheses. □

Lemma 2.2.5. If a raw type theory derives Θ;Γ, a:𝐴,Δ ⊢ B and Θ;Γ ⊢ 𝑡 : 𝐴 then it
derives Θ;Γ,Δ[𝑡/a] ⊢ B[𝑡/a].

Proof. The base cases immediately reduce to the previous lemma. The case of
TT-Bdry-Abstr is similar to the case of TT-Abstr in the previous lemma. □

Lemma 2.2.6. In a raw type theory the following rules are admissible:

TT-Subst
Θ;Γ ⊢ {𝑥:𝐴} J Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ J[𝑡/𝑥]

TT-Bdry-Subst
Θ;Γ ⊢ {𝑥:𝐴} B Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ B[𝑡/𝑥]

TT-Conv-Abstr
Θ;Γ ⊢ {𝑥:𝐴} J Θ;Γ ⊢ 𝐵 type Θ;Γ ⊢ 𝐴 ≡ 𝐵

Θ;Γ ⊢ {𝑥:𝐵} J

Proof. Suppose the premises of TT-Subst are derivable. By inversion the first premise
is derived by an application of TT-Abstr, therefore for some a ∉ |Γ|, we can derive
Θ;Γ, a:𝐴 ⊢ J[a/𝑥]. Lemma 2.2.4 yields Θ;Γ ⊢ (J[a/𝑥]) [𝑡/a], which is equal to the
conclusion of TT-Subst.
The rule TT-Bdry-Subst follows from Lemma 2.2.5.
Next, assuming the premises of TT-Conv-Abstr are derivable, its conclusion is

derived as

Θ;Γ ⊢ 𝐵 type

Θ;Γ ⊢ {𝑥:𝐴} J
Θ;Γ, a:𝐵 ⊢ {𝑥:𝐴} J

Θ;Γ, a:𝐵 ⊢ a:𝐵

Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝐵 ≡ 𝐴

Θ;Γ, a:𝐵 ⊢ 𝐵 ≡ 𝐴

Θ;Γ, a:𝐵 ⊢ a:𝐴
Θ;Γ, a:𝐵 ⊢ J[a/𝑥]

TT-Subst

Θ;Γ ⊢ {𝑥:𝐵} J □

56 CHAPTER 2. FINITARY TYPE THEORIES

The next lemma claims that substitution preserves equality, but is a bit finicky to
state. Given terms 𝑠 and 𝑡, and an object judgement J, define J[(𝑠 ≡ 𝑡)/a] by

(𝐴 type) [(𝑠 ≡ 𝑡)/a] = (𝐴[𝑠/a] ≡ 𝐴[𝑡/a])
(𝑢 : 𝐴) [(𝑠 ≡ 𝑡)/a] = (𝑢[𝑠/a] ≡ 𝑢[𝑡/a] : 𝐴[𝑠/a])

({𝑥:𝐴} J) [(𝑠 ≡ 𝑡)/a] = ({𝑥:𝐴[𝑠/a]} J[(𝑠 ≡ 𝑡)/a]).

That is, J[(𝑠 ≡ 𝑡)/a] descends into abstractions by substituting 𝑠 for a in the types,
and distributes types and terms over the equation 𝑠 ≡ 𝑡.

Lemma 2.2.7. If a raw type theory derives

Θ;Γ ⊢ 𝑠 : 𝐴, (2.2)
Θ;Γ ⊢ 𝑡 : 𝐴, (2.3)
Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴. (2.4)
Θ;Γ, a:𝐴,Δ ⊢ J, (2.5)
Θ;Γ,Δ[𝑠/a] ⊢ 𝐵[𝑠/a] ≡ 𝐵[𝑡/a] for all b ∈ |Δ| with Δ(b) = 𝐵, (2.6)

then it derives

1. Θ;Γ,Δ[𝑠/a] ⊢ J[𝑠/a],

2. Θ;Γ,Δ[𝑠/a] ⊢ J[𝑡/a], and

3. Θ;Γ,Δ[𝑠/a] ⊢ J[(𝑠 ≡ 𝑡)/a] if J is an object judgement.

Proof. We proceed by induction on the derivation of (2.5).
Case TT-Var: For a variable b ∈ |Γ|, (1) and (2) follow by the same variable rule,
while (3) follows by reflexivity for b and the same variable rule.
For the variable a, the desired judgements are precisely the assumptions (2.2),

(2.3), and (2.4) weakened to Γ,Δ[𝑠/a].
For a variable b ∈ |Δ| with 𝐵 = Δ(b), the same variable rule derives Θ;Δ[𝑠/a] ⊢

b : 𝐵[𝑠/a] to satisfy (1), while (2) requires an additional conversion along

Θ;Γ,Δ[𝑠/a] ⊢ 𝐵[𝑠/a] ≡ 𝐵[𝑡/a] (2.7)

which is just (2.6). To show (3), namely Θ;Γ,Δ[𝑠/a] ⊢ b ≡ b : 𝐵[𝑠/a], we use
TT-EqTm-Refl and the variable rule.
Case TT-Abstr: Consider a derivation ending with an abstraction

Θ;Γ, a:𝐴,Δ ⊢ 𝐵 type b ∉ |Γ, a:𝐴,Δ| Θ;Γ, a:𝐴,Δ, b:𝐵 ⊢ J[b/𝑥]
Θ;Γ, a:𝐴,Δ ⊢ {𝑥:𝐵} J

The induction hypothesis (1) applied to the first premise yields

Θ;Γ,Δ[𝑠/a] ⊢ 𝐵[𝑠/a] type, (2.8)
Θ;Γ,Δ[𝑠/a] ⊢ 𝐵[𝑠/a] ≡ 𝐵[𝑡/a] . (2.9)

2.2. METATHEOREMS 57

Equation (2.9) ensures that the extended variable context Δ, b:𝐵 satisfies (2.6), hence
we may use the induction hypothesis (1) for the last premise to show

Θ;Γ,Δ[𝑠/a], b:𝐵[𝑠/a] ⊢ J[b/𝑥] [𝑠/a],

which equals
Θ;Γ,Δ[𝑠/a], b:𝐵[𝑠/a] ⊢ J[𝑠/a] [b/𝑥] . (2.10)

We can thus use the abstraction rule with (2.8) and (2.10) to derive Θ;Γ,Δ[𝑠/a] ⊢
{𝑥:𝐵[𝑠/a]} J[𝑠/a], as required.
The derivation of Θ;Γ,Δ[𝑠/a] ⊢ {𝑥:𝐵[𝑡/a]} J[𝑡/a] is more interesting. We first

apply induction hypothesis (2) to the last premise and get

Θ;Γ,Δ[𝑠/a], b:𝐵[𝑠/a] ⊢ J[b/𝑥] [𝑡/a] .

Abstraction now gets us to Θ;Γ,Δ[𝑠/a] ⊢ {𝑥:𝐵[𝑠/a]} J[𝑡/a], after which we apply
TT-Conv-Abstr from Lemma 2.2.6 to replace 𝐵[𝑠/a] with 𝐵[𝑡/a] using (2.9).
Lastly, we use the induction hypothesis (3) for the last premise to derive

Θ;Γ,Δ[𝑠/a], b:𝐵[𝑠/a] ⊢ (J[b/𝑥]) [(𝑠 ≡ 𝑡)/a],

which equals
Θ;Γ,Δ[𝑠/a], b:𝐵[𝑠/a] ⊢ (J[(𝑠 ≡ 𝑡)/a]) [b/𝑥] . (2.11)

We may thus apply abstraction to (2.8) and (2.11) to derive

Θ;Γ,Δ[𝑠/a] ⊢ {𝑥:𝐵[𝑠/a]} J[(𝑠 ≡ 𝑡)/a],

as desired.
Case TT-Meta: Suppose (2.5) concludes with the metavariable rule for M, where
Θ(M) = B = ({𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} b):

Θ;Γ, a:𝐴,Δ ⊢ 𝑢𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

Θ;Γ, a:𝐴,Δ ⊢ b [�⃗�/𝑥]
Θ;Γ, a:𝐴,Δ ⊢ ((b [�⃗�/𝑥])M(�⃗�))

(2.12)

Judgements (1) and (2) are derived by the metavariable rule for M, applied to the
corresponding induction hypotheses for the premises of (2.12). We address (3) in case
b = (□ : 𝐵), and leave the simpler case b = (□ type) to the reader. We thus seek a
derivation of

Θ;Γ,Δ[𝑠/a] ⊢ (M(�⃗�) : 𝐵[�⃗�/𝑥]) [(𝑠 ≡ 𝑡)/a]

which equals

Θ;Γ,Δ[𝑠/a] ⊢ M(�⃗�[𝑠/a]) ≡ M(�⃗�[𝑡/a]) : 𝐵[�⃗�[𝑠/a]/𝑥] .

This is just the conclusion of the congruence rule TT-Meta-Congr for M, suitably
applied so that its term and term equation premises are precisely the induction

58 CHAPTER 2. FINITARY TYPE THEORIES

hypotheses (1,2,3) for the term premises of (2.12), and its type equation premise is
obtained by application of the induction hypothesis (3) to the last premise of (2.12).
Case TT-Meta-Congr: If (2.5) ends with a congruence rule for an object metav-
ariable M then both (1) and (2) follow by the same congruence rule, applied to the
respective induction hypotheses for the premises.
Case of a specific rule: Suppose (2.5) ends with an application of the raw rule
𝑅 = (M1:B1, . . . ,M𝑛:B𝑛 =⇒ j) instantiated with 𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩:

Θ;Γ, a:𝐴,Δ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ, a:𝐴,Δ ⊢ 𝐼∗b where j = b 𝑒

Θ;Γ, a:𝐴,Δ ⊢ 𝐼∗j
(2.13)

We would like to derive

Θ;Γ,Δ[𝑠/a] ⊢ (𝐼∗j) [𝑠/a], (2.14)
Θ;Γ,Δ[𝑠/a] ⊢ (𝐼∗j) [𝑡/a], (2.15)

and in case j is an object judgement, also

Θ;Γ,Δ[𝑠/a] ⊢ (𝐼∗j) [(𝑠 ≡ 𝑡)/a] . (2.16)

We derive (2.14) by (𝐼 [𝑠/a])∗𝑅 where 𝐼 [𝑠/a] = ⟨M1 ↦→𝑒1 [𝑠/a], . . . ,M𝑛 ↦→𝑒𝑛 [𝑠/a]⟩,
as its premises are induction hypotheses. Similarly, (2.15) is derived by (𝐼 [𝑡/a])∗𝑅.
We consider (2.16) in case j = (𝑢 : 𝐵) and leave the simpler case j = (𝐵 type) to the
reader. We thus need to derive

Θ;Γ,Δ[𝑠/a] ⊢ (𝐼∗𝑢) [𝑠/a] ≡ (𝐼∗𝑢) [𝑡/a] : (𝐼∗𝐵) [𝑠/a], (2.17)

which we do by applying the congruence rule, where 𝐽 = 𝐼 [𝑠/a] and 𝐾 = 𝐼 [𝑡/a],

Θ;Γ,Δ[𝑠/a] ⊢ (𝐽(𝑖)∗B𝑖) 𝑒𝑖 [𝑠/a] for 𝑖 = 1, . . . , 𝑛

Θ;Γ,Δ[𝑠/a] ⊢ (𝐾 (𝑖)∗B𝑖) 𝑒𝑖 [𝑡/a] for 𝑖 = 1, . . . , 𝑛

Θ;Γ,Δ[𝑠/a] ⊢ (𝐽(𝑖)∗B𝑖) 𝑒𝑖 [𝑠/a] ≡ 𝑒𝑖 [𝑡/a] for object boundary B𝑖

Θ;Γ,Δ[𝑠/a] ⊢ 𝐽∗𝐵 ≡ 𝐾∗𝐵

Θ;Γ,Δ[𝑠/a] ⊢ 𝐽∗𝑢 ≡ 𝐾∗𝑢 : 𝐽∗𝐵

The first three rows of premises are just the the induction hypotheses for the first row
of premises of (2.13), and the last one is (3) for the last premise of (2.13).
Case of a congruence rule: Both (1) and (2) are derived by applying the induction
hypotheses to the premises and using the congruence rule.
Case TT-Conv-Tm: Consider a derivation ending with a conversion

Θ;Γ, a:𝐴,Δ ⊢ 𝑢 : 𝐵 Θ;Γ, a:𝐴,Δ ⊢ 𝐵 ≡ 𝐶
Θ;Γ, a:𝐴,Δ ⊢ 𝑢 : 𝐶

2.2. METATHEOREMS 59

The judgements Θ;Γ,Δ[𝑠/a] ⊢ 𝑢[𝑠/a] : 𝐶 [𝑠/a] and Θ;Γ,Δ[𝑠/a] ⊢ 𝑢[𝑡/a] : 𝐶 [𝑡/a]
immediately follow from the induction hypothesis and conversion. To derive
Θ;Γ,Δ[𝑠/a] ⊢ (𝑢 : 𝐶) [(𝑠 ≡ 𝑡)/a], note that the induction hypothesis (3) for the first
premise yields

Θ;Γ,Δ[𝑠/a] ⊢ 𝑢[𝑠/a] ≡ 𝑢[𝑡/a] : 𝐵[𝑠/a],

and (1) applied to the second premise

Θ;Γ,Δ[𝑠/a] ⊢ 𝐵[𝑠/a] ≡ 𝐶 [𝑠/a] .

Thus by equality conversion we conclude Θ;Γ,Δ[𝑠/a] ⊢ 𝑢[𝑠/a] ≡ 𝑢[𝑡/a] : 𝐶 [𝑠/a].
Cases TT-EqTy-Refl, TT-EqTy-Sym, TT-EqTy-Trans, TT-EqTm-Refl, TT-EqTm-
Sym, TT-EqTm-Trans, TT-Conv-EqTm: These cases are dispensed with by straight-
forward applications of the induction hypotheses. □

TT-Subst
Θ;Γ ⊢ {𝑥:𝐴} J Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ J[𝑡/𝑥]

TT-Bdry-Subst
Θ;Γ ⊢ {𝑥:𝐴} B Θ;Γ ⊢ 𝑡 : 𝐴

Θ;Γ ⊢ B[𝑡/𝑥]

TT-Subst-EqTy
Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝐶 type

Θ;Γ ⊢ 𝑠 : 𝐴 Θ;Γ ⊢ 𝑡 : 𝐴 Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴
Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝐶 [𝑠/𝑥] ≡ 𝐶 [𝑡/𝑥]

TT-Subst-EqTm
Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝑢 : 𝐶

Θ;Γ ⊢ 𝑠 : 𝐴 Θ;Γ ⊢ 𝑡 : 𝐴 Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴
Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝑢[𝑠/𝑥] ≡ 𝑢[𝑡/𝑥] : 𝐶 [𝑠/𝑥]

TT-Conv-Abstr
Θ;Γ ⊢ {𝑥:𝐴} J Θ;Γ ⊢ 𝐵 type Θ;Γ ⊢ 𝐴 ≡ 𝐵

Θ;Γ ⊢ {𝑥:𝐵} J

Figure 2.8: Admissible substitution rules

Theorem 2.2.8 (Admissibility of substitution). In a raw type theory, the closure rules
from Fig. 2.8 are admissible.

Proof. We already established admissibility of TT-Subst, TT-Bdry-Subst, and TT-
Conv-Abstr in Lemma 2.2.6. Both TT-Subst-EqTy and TT-Subst-EqTm are seen to
be admissible the same way: invert the abstraction and apply Lemma 2.2.7 to derive
the desired conclusion. □

60 CHAPTER 2. FINITARY TYPE THEORIES

Weprovide twomore lemmas that allow us to combine substitutions and judgmental
equalities more flexibly.

Lemma 2.2.9. Suppose a raw type theory derives

Θ;Γ ⊢ 𝑠 : 𝐴, Θ;Γ ⊢ 𝑡 : 𝐴, and Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴.
1. If it derives

Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝐶 ≡ 𝐷 and Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝐷 type

then it derives Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝐶 [𝑠/𝑥] ≡ 𝐷 [𝑡/𝑥] .

2. If it derives

Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝑢 ≡ 𝑣 : 𝐶 and Θ;Γ ⊢ {𝑥:𝐴}{�⃗�:�⃗�} 𝑣 : 𝐶
then it derives Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝑢[𝑠/𝑥] ≡ 𝑣 [𝑡/𝑥] : 𝐶 [𝑠/𝑥].

Proof. We spell out the proof of the first claim only. By substituting 𝑠 for 𝑥 in the first
assumption we obtain

Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝐶 [𝑠/𝑥] ≡ 𝐷 [𝑠/𝑥],
and by applying TT-Subst-EqTy to the second assumption

Θ;Γ ⊢ {�⃗�:�⃗�[𝑠/𝑥]} 𝐷 [𝑠/𝑥] ≡ 𝐷 [𝑡/𝑥] .
These twomay be combined to give the desired judgement by unpacking the abstraction,
applying transitivity, and packing up the abstraction. □

Lemma 2.2.10. Suppose a raw type theory derives ⊢ Θ mctx and, for 𝑖 = 1, . . . , 𝑛,

Θ;Γ ⊢ 𝑠𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]
Θ;Γ ⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]
Θ;Γ ⊢ 𝑠𝑖 ≡ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] .

If it derives an object judgement Θ;Γ ⊢ {𝑥:�⃗�} B 𝑒 then it derives

Θ;Γ ⊢ (B[�⃗�/𝑥]) 𝑒[�⃗�/𝑥] ≡ 𝑒[�⃗�/𝑥] .

Proof. First, by inversion on the derivation of Θ;Γ ⊢ {𝑥:�⃗�} B 𝑒 we see that, for
𝑖 = 1, . . . , 𝑛,

Θ;Γ ⊢ {𝑥 (𝑖) :�⃗�(𝑖) } 𝐴𝑖 type.
Next, we claim that, for all 𝑗 = 1, . . . , 𝑖 − 1,

Θ;Γ ⊢ {𝑥 𝑗 :𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)]} · · · {𝑥𝑖−1:𝐴𝑖−1 [�⃗� (𝑗)/𝑥 (𝑗)]}
𝐴𝑖 [�⃗� (𝑗)/𝑥 (𝑗)] ≡ 𝐴𝑖 [�⃗� (𝑗)/𝑥 (𝑗)] .

Indeed, when 𝑗 = 1 the statement reduces to reflexivity, while an application of
Lemma 2.2.9 lets us pass from 𝑗 to 𝑗 + 1. When 𝑗 = 𝑖 we obtain

Θ;Γ ⊢ 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] ≡ 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)],
and this can be used to show by conversion that Θ;Γ ⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]. Now the
goal can be derived by repeated applications of Lemma 2.2.9. □

2.2. METATHEOREMS 61

2.2.1.2 Admissibility of instantiations

We next turn to admissibility of instantiations, i.e. preservation of derivability under
instantiation of metavariables by heads of derivable judgements.

Definition 2.2.11. An instantiation 𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩ of a metavariable
context Ξ = [M1:B1, . . . ,M𝑛:B𝑛] over Θ;Γ is derivable when Θ;Γ ⊢ (𝐼 (𝑘)∗B𝑘) 𝑒𝑘 is
derivable for 𝑘 = 1, . . . , 𝑛.

Lemma 2.2.12. In a raw type theory, let 𝐼 be a derivable instantiation of Ξ over
context Θ;Γ. If Ξ;Γ,Δ ⊢ J is derivable then so is Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗J, and similarly for
boundaries.

Proof. We proceed by structural induction on the derivation of Ξ;Γ,Δ ⊢ J, only
devoting attention to the metavariable and abstraction rules, as all the other cases are
straightforward.
Case TT-Meta: Consider an application of a metavariable rule for M with Ξ(M) =
({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b) and 𝐼 (M) = {𝑥}𝑒:

Ξ;Γ,Δ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ b [�⃗�/𝑥]
Ξ;Γ,Δ ⊢ (b [�⃗�/𝑥])M(�⃗�)

We need to derive
Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [𝐼∗ �⃗�/𝑥]) 𝑒[𝐼∗ �⃗�/𝑥] . (2.18)

By induction hypothesis, for each 𝑗 = 1, . . . , 𝑚,

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑡 𝑗 : (𝐼∗𝐴 𝑗) [𝐼∗�⃗� (𝑗)/𝑥 (𝑗)],

while derivability of 𝐼 at M and weakening by 𝐼∗Δ yield

Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐼∗ �⃗�} (𝐼∗b) 𝑒 . (2.19)

We now derive (2.18) by repeatedly using TT-Subst to substitute 𝐼∗𝑡𝑖’s for 𝑥𝑖’s
in (2.19).
Case TT-Meta-Congr: Consider an application of a metavariable congruence rule
for M with Ξ(M) = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b) and 𝐼 (M) = {𝑥}𝑒:

Ξ;Γ,Δ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)
Ξ;Γ,Δ ⊢ (b [�⃗�/𝑥])M(�⃗�) ≡ M(�⃗�)

62 CHAPTER 2. FINITARY TYPE THEORIES

We need to derive

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [𝐼∗ �⃗�/𝑥]) 𝑒[𝐼∗ �⃗�/𝑥] ≡ 𝑒[𝐼∗�⃗�/𝑥] .

Derivability of 𝐼 yields

Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐼∗ �⃗�} (𝐼∗b) 𝑒 . (2.20)

We may apply Lemma 2.2.10 to (2.20) with terms 𝐼∗ �⃗� and 𝐼∗�⃗�. The preconditions of
the lemma are met by the induction hypotheses for the premises.
Case TT-Abstr: Suppose the derivation ends with an abstraction

Ξ;Γ,Δ ⊢ 𝐴 type a ∉ |Γ,Δ| Ξ;Γ,Δ, a:𝐴 ⊢ J[a/𝑥]
Ξ;Γ,Δ ⊢ {𝑥:𝐴} J

The induction hypotheses for the premises state

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴 type and Θ;Γ, 𝐼∗Δ, a:𝐼∗𝐴 ⊢ 𝐼∗(J[a/𝑥]).

Because 𝐼∗(J[a/𝑥]) = (𝐼∗J) [a/𝑥] we may abstract a to derive

Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐼∗𝐴} 𝐼∗J. □

Theorem 2.2.13 (Admissibility of instantiation). In a raw type theory, let 𝐼 be a
derivable instantiation of Ξ over context Θ;Γ. If Ξ;Γ ⊢ J is derivable then so is
Θ;Γ ⊢ 𝐼∗J, and similarly for boundaries.

Proof. Apply Lemma 2.2.12 with empty Δ. □

We next show that, under favorable conditions, instantiating by judgementally
equal instantiations leads to judgemental equality. To make the claim precise, define
the notation (𝐼 ≡ 𝐽)∗J by

(𝐼 ≡ 𝐽)∗(𝐴 type) = (𝐼∗𝐴 ≡ 𝐽∗𝐴 by ★),
(𝐼 ≡ 𝐽)∗(𝑡 : 𝐴) = (𝐼∗𝑡 ≡ 𝐽∗𝑡 : 𝐼∗𝐴 by ★),

(𝐼 ≡ 𝐽)∗({𝑥:𝐴} J) = ({𝑥:𝐼∗𝐴} (𝐼 ≡ 𝐽)∗J)

and say that instantiations

𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩ and 𝐽 = ⟨M1 ↦→ 𝑓1, . . . ,M𝑛 ↦→ 𝑓𝑛⟩

of Ξ = [M1:B1, . . . ,M𝑛:B𝑛] overΘ;Γ are judgementally equalwhen, for 𝑘 = 1, . . . , 𝑛,
if B𝑘 is an object boundary then Θ;Γ ⊢ (𝐼 (𝑘)∗B𝑘) 𝑒𝑘 ≡ 𝑓𝑘 is derivable.

Lemma 2.2.14. In a raw type theory, consider derivable instantiations 𝐼 and 𝐽

of Ξ = [M1:B1, . . . ,M𝑛:B𝑛] over Θ;Γ which are judgementally equal. Suppose

2.2. METATHEOREMS 63

that ⊢ Ξ mctx and Θ ⊢ Γ vctx, and that Θ;Γ,Δ ⊢ (𝐼 (𝑖)∗B𝑖) 𝐽 (M𝑖) is derivable for
𝑖 = 1, . . . , 𝑛, and additionally that, for all a ∈ |Δ| with Δ(a) = 𝐴, so are

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴 type,
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝐴 type,
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴 ≡ 𝐽∗𝐴

If Ξ;Γ,Δ ⊢ J is derivable then so are

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗J, (2.21)
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗J, (2.22)
Θ;Γ, 𝐼∗Δ ⊢ (𝐼 ≡ 𝐽)∗J if J is an object judgement. (2.23)

Proof. Note that (2.21) already follows from Theorem 2.2.13, so we do not bother to
reprove it, but we include the statement because we use it repeatedly. We proceed by
structural induction on the derivations of ⊢ Ξ mctx and Ξ;Γ,Δ ⊢ J.
Case TT-Var: Consider a derivation ending with the variable rule

Ξ;Γ,Δ ⊢ a𝑖 : 𝐴𝑖 .

We derive (2.22) by the variable rule, and when a𝑖 ∈ |Δ| a subsequent conversion
along Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴𝑖 ≡ 𝐽∗𝐴𝑖 . The judgement (2.23) holds by TT-EqTm-Refl.
Case TT-Abstr: Consider a derivation ending with an abstraction

Ξ;Γ,Δ ⊢ 𝐵 type b ∉ |Γ,Δ| Ξ;Γ,Δ, b:𝐵 ⊢ J[b/𝑦]
Ξ;Γ,Δ ⊢ {𝑦:𝐵} J

The induction hypothesis for the first premise yields

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐵 type, (2.24)
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝐵 type, (2.25)
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵. (2.26)

The extended variable context Γ,Δ, b:𝐵 satisfies the preconditions of the induction
hypotheses for the second premise, therefore

Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ (𝐼∗J) [b/𝑦], (2.27)
Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ (𝐽∗J) [b/𝑦], (2.28)
Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ ((𝐼 ≡ 𝐽)∗J) [b/𝑦], (2.29)

where (2.29) is present only when J is an object judgement. Now (2.23) follows by
abstraction from (2.24) and (2.29). To derive (2.22), we first abstract (2.28) to get

Θ;Γ, 𝐼∗Δ ⊢ {𝑦:𝐼∗𝐵} 𝐽∗J

64 CHAPTER 2. FINITARY TYPE THEORIES

and then apply TT-Conv-Abstr to convert it along (2.26) to derive the desired

Θ;Γ, 𝐼∗Δ ⊢ {𝑦:𝐽∗𝐵} 𝐽∗J.

Case of a specific rule: Consider a specific rule

𝑅 = (N1:B′
1, . . . ,N𝑚:B′

𝑚 =⇒ b 𝑒)

and an instantiation 𝐾 = ⟨N1 ↦→𝑔1, . . . ,N𝑚 ↦→𝑔𝑚⟩. Suppose the derivation ends with
the instantiation 𝐾∗𝑅:

Ξ;Γ,Δ ⊢ (𝐾 (𝑖)∗B
′
𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝐾∗b

Ξ;Γ,Δ ⊢ 𝐾∗(b 𝑒)
(2.30)

We derive (2.22) by (𝐽∗𝐾)∗𝑅where 𝐽∗𝐾 = ⟨N1 ↦→𝐽∗𝑔1, . . . ,N𝑚 ↦→𝐽∗𝑔𝑚⟩. The resulting
premises for 𝑖 = 1, . . . , 𝑚 are precisely the induction hypotheses (2.22) for the premises
of (2.30). The last premise, Θ;Γ, 𝐼∗Δ ⊢ (𝐽∗𝐾)∗b, follows by case analysis of b and the
same induction hypothesis (2.22). To establish (2.23), we must derive

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗𝐾)∗b) (𝐼∗𝐾)∗𝑒 ≡ (𝐽∗𝐾)∗𝑒 .

We do so by an application of the congruence rule associated with 𝑅, instantiated with
𝐼∗𝐾 and 𝐽∗𝐾. The resulting closure rule has four sets of premises, all of which are
derivable:

• both copies of premises of 𝑅 are derivable because they are the induction
hypotheses (2.21) and (2.22) for the premises of (2.30),

• the additional equational premises are derivable because they are the induction
hypotheses (2.23) for the premises of (2.30).

Case of a congruence rule: Similar to the case of a specific rule. Given a congruence
rule with instantiations 𝐿 and 𝐾 , (2.22) follows from the same congruence rule with
instantiations 𝐽∗𝐿 and 𝐽∗𝐾 . The premises hold by induction hypothesis (2.22).
Case TT-Meta: Consider a derivation ending with an application of the metavariable
rule forM𝑖 , where 𝑥 = (𝑥1, . . . , 𝑥𝑚), �⃗� = (𝑡1, . . . , 𝑡𝑚), 𝐽 (M𝑖) = {𝑥}𝑒, andB𝑖 = {𝑥:�⃗�} b,

Ξ;Γ,Δ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚
Ξ;Γ,Δ ⊢ b [�⃗�/𝑥]

Ξ;Γ,Δ ⊢ (b [�⃗�/𝑥])M𝑖 (�⃗�)
(2.31)

Because 𝐽 is derivable we know that Θ;Γ ⊢ {𝑥:𝐽∗ �⃗�} (𝐽∗b) 𝑒 . For (2.22), we derive

Θ;Γ, 𝐼∗Δ ⊢ ((𝐽∗b) [𝐽∗�⃗�/𝑥]) 𝑒[𝐽∗ �⃗�/𝑥]

2.2. METATHEOREMS 65

by substituting 𝐽∗�⃗� for 𝑥 by repeated applications ofTT-Subst, which generate premises,
for 𝑗 = 1, . . . , 𝑚,

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑡 𝑗 : (𝐽∗𝐴 𝑗) [𝐽∗�⃗� (𝑗)/𝑥 (𝑗)] .

These are precisely the induction hypotheses for the premises of (2.31).
It remains to show (2.23). Writing 𝐼 (M𝑖) as {𝑥}𝑒′, we must establish

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [𝐼∗ �⃗�/𝑥]) 𝑒′[𝐼∗�⃗�/𝑥] ≡ 𝑒[𝐽∗ �⃗�/𝑥] .

Because 𝐼 and 𝐽 are judgementally equal, we know that

Θ;Γ ⊢ {𝑥 : 𝐼∗ �⃗�} (𝐼∗b) 𝑒′ ≡ 𝑒 .

By substituting 𝐼∗�⃗� for 𝑥 by repeated use of TT-Subst, we derive

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [𝐼∗ �⃗�/𝑥]) 𝑒′[𝐼∗�⃗�/𝑥] ≡ 𝑒[𝐼∗�⃗�/𝑥] , (2.32)

where the substitutions generate obligations, for 𝑗 = 1, . . . , 𝑚,

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑡 𝑗 : (𝐼∗𝐴 𝑗) [𝐼∗ �⃗� (𝑗)/𝑥 (𝑗)] .

These are precisely the induction hypotheses for the term premises of (2.31). By
transitivity it suffices to derive

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [𝐼∗�⃗�/𝑥]) 𝑒[𝐼∗�⃗�/𝑥] ≡ 𝑒[𝐽∗�⃗�/𝑥] . (2.33)

The induction hypotheses for the premises of (2.31) for 𝑗 = 1, . . . , 𝑚 are

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑡 𝑗 : (𝐼∗𝐴 𝑗) [𝐼∗ �⃗� (𝑗)/𝑥 (𝑗)] (2.34)
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑡 𝑗 : (𝐽∗𝐴 𝑗) [𝐽∗ �⃗� (𝑗)/𝑥 (𝑗)] (2.35)
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑡 𝑗 ≡ 𝐽∗𝑡 𝑗 : (𝐼∗𝐴 𝑗) [𝐼∗�⃗� (𝑗)/𝑥 (𝑗)] . (2.36)

We would like to apply Lemma 2.2.10 to these judgements to derive (2.33), but the
type of the terms 𝐽∗𝑡 𝑗 in (2.35) does not match the type of the corresponding terms 𝐼∗𝑡 𝑗 .
We rectify the situation by successively deriving the equality of the types involved and
converting, as follows.
By assumption ⊢ Ξ mctx holds and henceΞ(𝑖) ; [] ⊢ {𝑥1:𝐴1} · · · {𝑥 𝑗−1:𝐴 𝑗−1} 𝐴 𝑗 type

for 𝑗 = 1, . . . , 𝑚. Note that the preceding judgement is derivable in a smaller metav-
ariable context, and we can thus appeal to the induction hypothesis to derive

Θ;Γ, 𝐼∗Δ ⊢ {𝑥1:𝐼∗𝐴1} · · · {𝑥 𝑗−1:𝐼∗𝐴 𝑗−1} 𝐼∗𝐴 𝑗 ≡ 𝐽∗𝐴 𝑗 .

We apply Lemma 2.2.10 together with (2.34,2.35,2.36) to obtain

Θ;Γ, 𝐼∗Δ ⊢ (𝐼∗𝐴 𝑗) [𝐼∗ �⃗� (𝑗)/𝑥 (𝑗)] ≡ (𝐽∗𝐴 𝑗) [𝐽∗ �⃗� (𝑗)/𝑥 (𝑗)] .

We now appeal to TT-Conv-Tm to derive

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑡 𝑗 : (𝐼∗𝐴 𝑗) [𝐼∗ �⃗� (𝑗)/𝑥 (𝑗)] . (2.37)

66 CHAPTER 2. FINITARY TYPE THEORIES

Finally we derive (2.33) by applying Lemma 2.2.10 to (2.34,2.37,2.36) and to the
judgement Θ;Γ ⊢ {𝑥:𝐼∗ �⃗�}(𝐼∗b) 𝑒 , which equals Θ;Γ ⊢ (𝐼∗B𝑖) 𝐽 (M𝑖) and so is
derivable by assumption.
Case TT-Meta-Congr: Consider a derivation ending with an application of the
congruence rule for M𝑖, where 𝑥 = (𝑥1, . . . , 𝑥𝑚), �⃗� = (𝑠1, . . . , 𝑠𝑚), �⃗� = (𝑡1, . . . , 𝑡𝑚),
𝐽 (M𝑖) = {𝑥}𝑒, and B𝑖 = {𝑥:�⃗�} b,

Ξ;Γ,Δ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Ξ;Γ,Δ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)
Ξ;Γ,Δ ⊢ (b [�⃗�/𝑥])M𝑖 (�⃗�) ≡ M𝑖 (�⃗�)

(2.38)

Because 𝐽 is derivable we know that Θ;Γ ⊢ {𝑥:𝐽∗ �⃗�} (𝐽∗b) 𝑒 , therefore by weakening
also

Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐽∗ �⃗�} (𝐽∗b) 𝑒 .

The desired judgement

Θ;Γ, 𝐼∗Δ ⊢ ((𝐽∗b) [𝐽∗ �⃗�/𝑥]) 𝑒[𝐽∗ �⃗�/𝑥] ≡ 𝑒[𝐽∗�⃗�/𝑥]

may be derived by repeated applications of TT-Subst-EqTm, provided that, for
𝑗 = 1, . . . , 𝑚,

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑠 𝑗 : (𝐽∗𝐴 𝑗) [𝐽∗ �⃗� (𝑗)/𝑥 (𝑗)],
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑡 𝑗 : (𝐽∗𝐴 𝑗) [𝐽∗�⃗� (𝑗)/𝑥 (𝑗)],
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑠 𝑗 ≡ 𝐽∗𝑡 𝑗 : (𝐽∗𝐴 𝑗) [𝐽∗ �⃗� (𝑗)/𝑥 (𝑗)] .

These are precisely induction hypotheses for (2.38).
Cases TT-EqTy-Refl, TT-EqTy-Sym, TT-EqTy-Trans, TT-EqTm-Refl, TT-EqTm-
Sym, TT-EqTm-Trans, TT-Conv-Tm, and TT-Conv-EqTm : The remaining cases are
all equality rules. Each is established by an appeal to the induction hypotheses for the
premises, followed by an application of the same rule. □

Lemma 2.2.14 imposes conditions on the instantiations and the context which can
be reduced to the more familiar assumption of well-typedness of the context, using
Lemma 2.2.14 itself, as follows.

Lemma 2.2.15. In a raw type theory, consider Ξ = [M1:B1, . . . ,M𝑛:B𝑛] such that
⊢ Ξ mctx, and derivable instantiations

𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩ and 𝐽 = ⟨M1 ↦→ 𝑓1, . . . ,M𝑛 ↦→ 𝑓𝑛⟩

2.2. METATHEOREMS 67

of Ξ over Θ;Γ which are judgementally equal. Suppose further that Θ ⊢ Γ vctx and
Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛. If Θ ⊢ (Γ,Δ) vctx, then for all a ∈ |Δ| with
Δ(a) = 𝐴:

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴 type,
Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝐴 type,
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴 ≡ 𝐽∗𝐴.

Proof. We proceed by induction on the length of Δ. The base case is trivial. For
the induction step, suppose Θ ⊢ (Γ,Δ, b:𝐵) vctx. For a ∈ |Δ| we apply the induction
hypothesis to Δ and weaken by b:𝐼∗𝐵. To deal with b, we apply Lemma 2.2.14 to
Θ;Γ,Δ ⊢ 𝐵 type, which holds by inversion, and weaken by b:𝐼∗𝐵 to derive the desired

Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ 𝐼∗𝐵 type,
Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ 𝐽∗𝐵 type,
Θ;Γ, 𝐼∗Δ, b:𝐼∗𝐵 ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵. □

Lemma 2.2.16. In a raw type theory, consider Ξ = [M1:B1, . . . ,M𝑛:B𝑛] such that
⊢ Ξ mctx, and derivable instantiations

𝐼 = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩ and 𝐽 = ⟨M1 ↦→ 𝑓1, . . . ,M𝑛 ↦→ 𝑓𝑛⟩

of Ξ over Θ;Γ which are judgementally equal. Suppose that Θ ⊢ Γ vctx. Then
Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 is derivable for 𝑖 = 1, . . . , 𝑛.

Proof. We proceed by induction on 𝑛. The base case is trivial. To prove the
induction step for 𝑛 > 0, suppose the statement holds for Ξ(𝑛) , 𝐼 (𝑛) and 𝐽(𝑛) , and
that B𝑛 = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b. By inversion on ⊢ Ξ mctx and weakening we
derive Ξ(𝑛) ;Γ ⊢ B𝑛. Then by inverting the abstractions of B𝑛 we obtain variables
�⃗� = (a1, . . . , a𝑚) such that, with 𝐴′

𝑖
= 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] and Δ = [a1:𝐴′

1, . . . , a𝑚:𝐴
′
𝑚],

Ξ(𝑛) ⊢ (Γ,Δ) vctx, and Ξ(𝑛) ;Γ,Δ ⊢ b [�⃗�/𝑥] .

We apply Lemma 2.2.15 to Ξ(𝑛) , 𝐼 (𝑛) , 𝐽(𝑛) , and Δ to derive, for 𝑖 = 1, . . . , 𝑚,

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴′
𝑖 type,

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝐴′
𝑖 type,

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐴′
𝑖 ≡ 𝐽∗𝐴′

𝑖 ,

Θ;Γ, 𝐼∗Δ ⊢ a𝑖 : 𝐽∗𝐴′
𝑖 . (2.39)

where (2.39) follows by conversion from the judgement above it. Next, we use (2.39)
to substitute a𝑖 for 𝑥𝑖 in Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐽∗ �⃗�} (𝐽∗b) 𝑓𝑛 , which results in

Θ;Γ, 𝐼∗Δ ⊢ ((𝐽∗b) [�⃗�/𝑥]) 𝑓𝑛 [�⃗�/𝑥] . (2.40)

68 CHAPTER 2. FINITARY TYPE THEORIES

If we can reduce (2.40) to

Θ;Γ, 𝐼∗Δ ⊢ ((𝐼∗b) [�⃗�/𝑥]) 𝑓𝑛 [�⃗�/𝑥] , (2.41)

we will be able to derive the desired judgement

Θ;Γ, 𝐼∗Δ ⊢ {𝑥:𝐼∗ �⃗�} (𝐼∗b) 𝑓𝑛
by abstracting a1, . . . , a𝑛 in (2.41). There are four cases, depending on what b is.
Case b = (□ type): (2.40) and (2.41) are the same.
Case b = (□ : 𝐵): We convert (2.40) along

Θ;Γ, 𝐼∗Δ ⊢ (𝐽∗𝐵) [�⃗�/𝑥] ≡ (𝐼∗𝐵) [�⃗�/𝑥],

which holds by Lemma 2.2.14 applied to Ξ(𝑛) ;Γ,Δ ⊢ 𝐵[�⃗�/𝑥] type with Ξ(𝑛) , 𝐼 (𝑛) ,
and 𝐽(𝑛) .
Case b = (𝐵 ≡ 𝐶 by □): Here (2.40) and (2.41) are respectively

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝐵 ≡ 𝐽∗𝐶 and Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐵 ≡ 𝐼∗𝐶.

The latter follows from the former if we can also derive

Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵, and Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐶 ≡ 𝐽∗𝐶. (2.42)

We invert Ξ(𝑛) ;Γ,Δ ⊢ 𝐵 ≡ 𝐶 by □ to derive

Ξ(𝑛) ;Γ,Δ ⊢ 𝐵 type and Ξ(𝑛) ;Γ,Δ ⊢ 𝐶 type. (2.43)

When we apply Lemma 2.2.14 to (2.43) it gives us (2.42).
Case b = (𝑠 ≡ 𝑡 : 𝐵 by □): Here (2.40) and (2.41) are respecetively

Θ;Γ, 𝐼∗Δ ⊢ 𝐽∗𝑠 ≡ 𝐽∗𝑡 : 𝐽∗𝐵 and Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑠 ≡ 𝐼∗𝑡 : 𝐼∗𝐵,

The latter follows from the former if we can also derive
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵,
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑠 ≡ 𝐽∗𝑠 : 𝐼∗𝐵,
Θ;Γ, 𝐼∗Δ ⊢ 𝐼∗𝑡 ≡ 𝐽∗𝑡 : 𝐼∗𝐵.

(2.44)

We invert Ξ(𝑛) ;Γ,Δ ⊢ 𝑠 ≡ 𝑡 : 𝐵 by □ to derive

Ξ(𝑛) ;Γ,Δ ⊢ 𝐵 type, Ξ(𝑛) ;Γ,Δ ⊢ 𝑠 : 𝐵 and Ξ(𝑛) ;Γ,Δ ⊢ 𝑡 : 𝐵. (2.45)

When we apply Lemma 2.2.14 to (2.45) it gives us (2.44). □

Finally, the lemmas can be assembled into an admissibility theorem about judge-
mentally equal derivable instantiations.

Theorem 2.2.17 (Admissibility of instantiation equality). In a raw type theory,
consider derivable instantiations 𝐼 and 𝐽 of Ξ over Θ;Γ which are judgementally
equal. Suppose that ⊢ Ξ mctx and Θ ⊢ Γ vctx. If an object judgement Ξ;Γ ⊢ J is
derivable then so is Θ;Γ ⊢ (𝐼 ≡ 𝐽)∗J.

Proof. Lemma 2.2.14 applies with empty Δ because the additional precondition for 𝐼
and 𝐽 is guaranteed by Lemma 2.2.16. □

2.2. METATHEOREMS 69

2.2.1.3 Presuppositivity of raw theories

Our last metatheorem about raw type theories shows that whenever a judgement is
derivable, so are its presuppositions, i.e. its boundary is well-formed.

Theorem 2.2.18 (Presuppositivity). If a raw type theory derives ⊢ Θ mctx, Θ ⊢ Γ vctx,
and Θ;Γ ⊢ B 𝑒 then it derives Θ;Γ ⊢ B.

Proof. We proceed by induction on the derivation of Θ;Γ ⊢ B 𝑒 .
Case TT-Var: By Proposition 2.2.3.
Case TT-Meta: The presupposition Θ;Γ ⊢ b [�⃗�/𝑥] is available as premise.
Case TT-Meta-Congr: Consider a derivation ending with an application of the
congruence rule for M whose boundary is Θ(M) = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b):

Θ;Γ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)
Θ;Γ ⊢ (b [�⃗�/𝑥])M(�⃗�) ≡ M(�⃗�)

If b = (□ type), the presupposition Θ;Γ ⊢ M(�⃗�) ≡ M(�⃗�) by □ follows directly by
TT-Bdry-EqTy and two uses of TT-Meta. If b = (□ : 𝐶), the presuppositions of
⊢ M(�⃗�) ≡ M(�⃗�) : 𝐶 [�⃗�/𝑥] by □ follow by TT-Bdry-EqTm:

1. Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] type holds by substitution of �⃗� for 𝑥 in Θ;Γ ⊢ {𝑥:�⃗�} 𝐶 type
much like in the previous case,

2. Θ;Γ ⊢ M(�⃗�) : 𝐶 [�⃗�/𝑥] holds by TT-Meta,

3. Θ;Γ ⊢ M(�⃗�) : 𝐶 [�⃗�/𝑥] is derived from Θ;Γ ⊢ M(�⃗�) : 𝐶 [�⃗�/𝑥] by conversion along
Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥], which holds by the last premise.

When applying TT-Meta above, the premise Θ;Γ ⊢ b [�⃗�/𝑥] is required, and likewise
for �⃗�. We may derive it by applying Proposition 2.2.3 to ⊢ Θ mctx and substituting �⃗�
for 𝑥 with the help of TT-Subst, and analogously for �⃗�.
Case TT-Abstr: Consider an abstraction

Θ;Γ ⊢ 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ⊢ J[a/𝑥]
Θ;Γ ⊢ {𝑥:𝐴} J

By induction hypothesis on the last premise, we obtain Θ;Γ, a:𝐴 ⊢ B[a/𝑥] after which
we apply TT-Bdry-Abstr.
Case of a specific rule: The presupposition is available as premise.
Case of a congruence rule: Consider a congruence rulles associated with an object
rule 𝑅 and instantiated with 𝐼 and 𝐽, as in Definition 2.1.13.

70 CHAPTER 2. FINITARY TYPE THEORIES

If 𝑅 concludes with ⊢ 𝐴 type, the presuppositions are Θ;Γ ⊢ 𝐼∗𝐴 type and
Θ;Γ ⊢ 𝐽∗𝐴 type, which are derivable by 𝐼∗𝑅 and 𝐽∗𝑅, respectively.
If 𝑅 concludes with ⊢ 𝑡 : 𝐴, the presuppositions are Θ;Γ ⊢ 𝐼∗𝐴 type, Θ;Γ ⊢

𝐼∗𝑡 : 𝐼∗𝐴, and Θ;Γ ⊢ 𝐽∗𝑡 : 𝐼∗𝐴. We derive the first one by applying the induction
hypothesis to the premise Θ;Γ ⊢ 𝐼∗𝐵 ≡ 𝐽∗𝐵, the second one by 𝐼∗𝑅, and the third one
by converting the second one along the aforementioned premise.
Cases TT-EqTy-Refl, TT-EqTy-Sym, TT-EqTy-Trans, TT-EqTm-Refl, TT-EqTm-
Sym, TT-EqTm-Trans: These are all dispensed with by straightforward appeals to the
induction hypotheses.
Case TT-Conv-Tm: Consider a term conversion

Θ;Γ ⊢ 𝑡 : 𝐴 Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝑡 : 𝐵

Then Θ;Γ ⊢ 𝐵 type holds by the induction hypothesis for the second premise.
Case TT-Conv-EqTm: Consider a term equality conversion

Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐵

As in the previous case, the induction hypothesis for the second premise provides
Θ;Γ ⊢ 𝐵 type. The induction hypothesis for the first premise yields

Θ;Γ ⊢ 𝑠 : 𝐴 and Θ;Γ ⊢ 𝑡 : 𝐴

We may convert these to Θ;Γ ⊢ 𝑠 : 𝐵 and Θ;Γ ⊢ 𝑡 : 𝐵 using the second premise. □

2.2.2 Metatheorems about finitary theories

Several closure rules contain premises which at first sight seem extraneous, in particular
the boundary premises in rule instantiations (Definition 2.1.8) and the last premise in a
congruence rule (Definition 2.1.13). While these are needed for raw rules, they ought
to be removable for finitary rules, which already have well-formed boundaries. We
show that this is indeed the case by providing economic versions of the rules, which
are admissible in finitary type theories. We also show that the metavariable rules
(Definition 2.1.15) have economic versions that are valid in well-formed metavariable
contexts.

Proposition 2.2.19. [Economic version of Definition 2.1.8] Let 𝑅 be the raw rule
Ξ =⇒ b 𝑒 with Ξ = [M1:B1, . . . ,M𝑛:B𝑛] such that Ξ; [] ⊢ b is derivable, in particular
𝑅 may be finitary. Then for any instantiation 𝐼 = [M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛] over Θ;Γ,
the following closure rule is admissible:

TT-Specific-Eco
Θ;Γ ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛

Θ;Γ ⊢ 𝐼∗(b 𝑒)

2.2. METATHEOREMS 71

Proof. To apply 𝐼∗𝑅, derive the missing premise Θ;Γ ⊢ 𝐼∗b via Theorem 2.2.13. □

Proposition 2.2.20 (Economic version of Definition 2.1.15). If a raw type theory
derives ⊢ Θ mctx with Θ(M) = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b), the following closure rules
are admissible:

TT-Meta-Eco
Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ (b [�⃗�/𝑥])M(�⃗�)

TT-Meta-Congr-Eco
Θ;Γ ⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ (b [�⃗�/𝑥])M𝑘 (�⃗�) ≡ M𝑘 (�⃗�)

Proof. To prove admissibility of TT-Meta-Eco, note that by Proposition 2.2.3 we
have Θ;Γ ⊢ {𝑥:�⃗�} b, so we may derive Θ;Γ ⊢ b [�⃗�/𝑥] by substituting �⃗� for 𝑥 by
repeated applications of TT-Subst to the premises of TT-Meta-Eco. We can now
apply TT-Meta.
Next, we address admissibility of TT-Meta-Congr-Eco by deriving its conclusion

with the aid of TT-Meta-Congr. For this purpose we need to derive

Θ;Γ ⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚
Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚
Θ;Γ ⊢ 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] if b = (□ : 𝐶)

The first group follows by Theorem 2.2.18. The second is established by induction
on 𝑗 : by Proposition 2.2.3, Θ ⊢ {𝑥:�⃗�} b holds, and thus Θ ⊢ {𝑥 (𝑗) :�⃗�(𝑗) } 𝐴 𝑗 type. By
applying Lemma 2.2.10, we obtain Θ;Γ ⊢ 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] ≡ 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] and we can
convert Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] which holds again by Theorem 2.2.18. Finally, the
last premise holds again by Lemma 2.2.10, this time applied to Θ ⊢ {𝑥:�⃗�} 𝐶 type. □

2.2.3 Metatheorems about standard theories

We next investigate to what extent a derivation of a derivable judgement can be
reconstructed from the judgement itself. Firstly, a term expression holds enough
information to recover a candidate for its type.

Definition 2.2.21. Let 𝑇 be a standard type theory. The natural type 𝜏Θ;Γ(𝑡) of a term
expression 𝑡 with respect to a context Θ;Γ is defined by:

𝜏Θ;Γ(a) = Γ(𝑎),
𝜏Θ;Γ(M(�⃗�)) = 𝐵[�⃗�/𝑥] where Θ(M) = ({𝑥:�⃗�} □ : 𝐵)
𝜏Θ;Γ(S(𝑒)) = ⟨M⃗↦→𝑒⟩∗𝐵 where the rule for S is M⃗:B⃗ =⇒ □ : 𝐵

We prove an inversion principle that recovers the “stump” of a derivation of a
derivable object judgement.

72 CHAPTER 2. FINITARY TYPE THEORIES

Theorem 2.2.22 (Inversion). If a standard type theory derives an object judgement
then it does so by a derivation which concludes with precisely one of the following
rules:

1. the variable rule TT-Var,

2. the metavariable rule TT-Meta,

3. an instantiation of a symbol rule,

4. the abstraction rule TT-Abstr,

5. the term conversion rule TT-Conv-Tm of the form

Θ;Γ ⊢ 𝑡 : 𝜏Θ;Γ(𝑡) Θ;Γ ⊢ 𝜏Θ;Γ(𝑡) ≡ 𝐴

Θ;Γ ⊢ 𝑡 : 𝐴

where 𝜏Θ;Γ(𝑡) ≠ 𝐴.

Proof. Weproceed by induction on the derivationΓ;Θ ⊢ J. If the derivation concludes
with TT-Var, TT-Meta, a symbol rule, or TT-Abstr, then it already has the desired
form. The remaining case is a derivation 𝐷 ending with a term conversion rule

𝐷1

Θ;Γ ⊢ 𝑡 : 𝐴
𝐷2

Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝑡 : 𝐵

By induction hypothesis we may invert 𝐷1 and obtain a derivation 𝐷 ′ of Θ;Γ ⊢ 𝑡 : 𝐴
as in the statement of the theorem:

1. If 𝐷 ′ ends with TT-Var, TT-Meta or a term symbol rule then 𝐴 = 𝜏Θ;Γ(𝑡).
Either 𝜏Θ;Γ(𝑡) = 𝐵 and we use 𝐷 ′, or 𝜏Θ;Γ(𝑡) ≠ 𝐵 and we use 𝐷.

2. If 𝐷 ′ concludes with a term conversion
𝐷 ′
1

Θ;Γ ⊢ 𝑡 : 𝜏Θ;Γ (𝑡)
𝐷 ′
2

Θ;Γ ⊢ 𝜏Θ;Γ (𝑡) ≡ 𝐴

Θ;Γ ⊢ 𝑡 : 𝐴

there are again two cases. If 𝜏Θ;Γ(𝑡) = 𝐵 we use 𝐷 ′
1, otherwise we combine

𝜏Θ;Γ(𝑡) ≡ 𝐴 and 𝐴 ≡ 𝐵 by transitivity and conversion:

𝐷 ′
1

Θ;Γ ⊢ 𝑡 : 𝜏Θ;Γ (𝑡)

𝐷 ′
2

Θ;Γ ⊢ 𝜏Θ;Γ (𝑡) ≡ 𝐴

𝐷2

Θ;Γ ⊢ 𝐴 ≡ 𝐵
Θ;Γ ⊢ 𝜏Θ;Γ (𝑡) ≡ 𝐵

Θ;Γ ⊢ 𝑡 : 𝐵
□

We may keep applying the theorem to all the object premises of a stump to recover
the proof-relevant part of the derivation. The remaining proof-irrelevant parts are the
equational premises. The inversion theorem yields further desirable meta-theoretic
properties of standard type theories.

2.2. METATHEOREMS 73

Corollary 2.2.23. If a standard type theory derives Θ;Γ ⊢ 𝑡 : 𝐴 then it derives
Θ;Γ ⊢ 𝜏Θ;Γ(𝑡) ≡ 𝐴.

Proof. By inversion, 𝜏Θ;Γ(𝑡) = 𝐴 or we obtain a derivation of ⊢ 𝜏Θ;Γ(𝑡) ≡ 𝐴. □

Theorem 2.2.24 (Uniqueness of typing). For a standard type theory:

1. If Θ;Γ ⊢ 𝑡 : 𝐴 and Θ;Γ ⊢ 𝑡 : 𝐵 then Θ;Γ ⊢ 𝐴 ≡ 𝐵.

2. If ⊢ Θ mctx and Θ ⊢ Γ vctx and Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 and Θ;Γ ⊢ 𝑠 ≡ 𝑡 : 𝐵 then
Θ;Γ ⊢ 𝐴 ≡ 𝐵.

Proof. The first statement holds because 𝐴 and 𝐵 are both judgmentally equal to
the natural type of 𝑡 by Corollary 2.2.23. The second statement reduces to the first
one because the presuppositions Θ;Γ ⊢ 𝑡 : 𝐴 and Θ;Γ ⊢ 𝑡 : 𝐵 are derivable by
Theorem 2.2.18. □

Heron, The natural history of British birds, v.4 (1797).
Source: Biodiversity Heritage Library.

https://www.flickr.com/photos/biodivlibrary/49531690572/in/album-72157713098464653/

Chapter 3

Context-free type theories

In this chapter we give a second account of type theories, which is better suited for
the forward-chaining style of proof development, characteristic of LCF-style theorem
provers. These theories are context-free because the judgements have no explicit
context. Instead, variables are always tagged with typing annotations. In Section 3.2
we establish metatheorems about context-free type theories, that we need to carry out
the translation between the context and context-free variants.
Finally, in Section 3.3 we provide faithful translations between the two versions

of type theories, thus showing that nothing is lost or gained in terms of expressivity
by using one formalism instead of the other. This result opens the way to an
implementation of finitary type theories viewed through the lens of context-free type
theories in a proof assistant, as described in the next chapter.

3.1 Context-free finitary type theories

In the forward-chaining style, characteristic of LCF-style theorem provers, a judgement
is not construed by reducing a goal to subgoals, but as a value of an abstract datatype,
and built by applying an abstract datatype constructor to previously derived judgements.
What should such a constructor do when its arguments have mismatching variable
contexts? It can try to combine them if possible, or require that the user make sure
ahead of time that they match. As was already noted by Geuvers et al. in the context
of pure type systems (Geuvers et al. 2010), it is best to sidestep the whole issue by
dispensing with contexts altogether. In the present section we give a second account
of finitary type theories, this time without context and with free variables explicitly
annotated with their types.
Our formulation of context-free finitary type theories is akin to the Γ∞ formalism

for pure type systems (Geuvers et al. 2010). We would like to replace judgements of
the form “Θ;Γ ⊢ J” with just “J”. In traditional accounts of logic, as well as in Γ∞,
this is accomplished by explicit type annotations of free variables: rather than having
a : 𝐴 in the variable context, each occurrence of a is annotated with its type as a𝐴.

75

76 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

We use the same idea, although we have to overcome several technical complic-
ations, of which the most challenging one is the lack of strengthening, which is the
principle stating that if Θ;Γ, a:𝐴,Δ ⊢ J is derivable and a does not appear in Δ and J,
then Θ;Γ,Δ ⊢ J is derivable. An example of a rule that breaks strengthening for
finitary type theories is equality reflection from Example 2.1.7,

⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)
⊢ s ≡ t : A

Because the conclusion elides the metavariable p, it will not record the fact that a
variable may have been used in the derivation of the fourth premise. Consequently,
we cannot tell what variables ought to occur in the context just by looking at the
judgement thesis. As it turns out, variables elided by derivations of equations are the
only culprit, and the situation can be rectified by modifying equality judgements so
that they carry additional information about usage of variables. In the present section
we show how this is accomplished by revisiting the definition of type theories from
Section 2.1 and making the appropriate modifications.

3.1.1 Raw syntax of context-free type theories

Apart from removing the variable context and annotating free variables with type
expressions, we make three further modifications to the raw syntax: we remove
metavariable contexts, and instead annotate metavariables with boundaries; we
introduce assumption sets that keep track of variables used in equality derivations;
and we introduce explicit conversions.

3.1.1.1 Free and bound variables

The bound variables 𝑥, 𝑦, 𝑧, . . . are as before, for example they could be de Bruijn
indices, whereas the free variables are annotated explicitly with type expressions.
More precisely, given a set of names a, b, c, . . . a free variable takes the form a𝐴

where 𝐴 is a type expression, cf. Section 3.1.1.3. Two such variables a𝐴 and b𝐵 are
considered syntactically equal when the symbols a and b are the same and the type
expressions 𝐴 and 𝐵 are syntactically equal. Thus it is quite possible to have variables
a𝐴 and a𝐵 which are different even though 𝐴 and 𝐵 are judgmentally equal. In an
implementation it may be a good idea to prevent such extravaganza by generating fresh
symbols so that each one receives precisely one annotation.
Similarly, metavariables are tagged with boundaries, where again MB and NB′ are

considered equal when both the symbols M and N are equal and the boundaries B and
B′ are syntactically identical.

3.1.1.2 Arities and signatures

Arities of symbols and metavariables are as in Section 2.1.1.2, and so are signatures.

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 77

3.1.1.3 Raw expressions

The raw expressions of a context-free type theory are built over a signature Σ, as
summarized in the top part of Fig. 3.1.

Type expression 𝐴, 𝐵 ::= S(𝑒1, . . . , 𝑒𝑛) application of a type symbol S|︁|︁ MB (𝑡1, . . . , 𝑡𝑛) application of a type metavariable MB

Term expression 𝑠, 𝑡 ::= a𝐴 free variable|︁|︁ 𝑥 bound variable|︁|︁ S(𝑒1, . . . , 𝑒𝑛) application of a term symbol S|︁|︁ MB (𝑡1, . . . , 𝑡𝑛) application of a term metavariable MB|︁|︁ κ(𝑡, 𝛼) conversion

Assumption set 𝛼, 𝛽 ::= {| . . . , 𝑎𝐴𝑖 , . . . , 𝑥 𝑗 , . . . ,MB
𝑘 , . . . |}

Argument 𝑒 ::= 𝐴 type argument|︁|︁ 𝑡 term argument|︁|︁ 𝛼 assumption set|︁|︁ {𝑥}𝑒 abstracted argument (𝑥 bound in 𝑒)

Judgement j ::= 𝐴 type 𝐴 is a type|︁|︁ 𝑡 : 𝐴 𝑡 has type 𝑇|︁|︁ 𝐴 ≡ 𝐵 by 𝛼 𝐴 and 𝐵 are equal types|︁|︁ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 𝑠 and 𝑡 are equal terms at 𝐴
Abstracted judgement J ::= j non-abstracted judgement|︁|︁ {𝑥:𝐴} J abstracted judgement (𝑥 bound in J)

Boundary b ::= □ type a type|︁|︁ □ : 𝐴 a term of type 𝐴|︁|︁ 𝐴 ≡ 𝐵 by □ type equation boundary|︁|︁ 𝑠 ≡ 𝑡 : 𝐵 by □ term equation boundary
Abstracted boundary B ::= b non-abstracted boundary|︁|︁ {𝑥:𝐴} B abstracted boundary (𝑥 bound in B)

Figure 3.1: The raw syntax of context-free finitary type theories

A type expression is either a type symbol S applied to arguments 𝑒1, . . . , 𝑒𝑛, or a
metavariable MB applied to term expressions 𝑡1, . . . , 𝑡𝑛.
The syntax of term expressions differs from the one in Fig. 2.1 in two ways. First,

we annotate free variables with type expressions and metavariables with boundaries,
as was already discussed, where it should be noted that in an annotation 𝐴 of a𝐴 or B
of MB there may be further free and metavariables, which are also annotated, and so

78 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

on. We require that a boundary annotation B be closed, and that a type annotation 𝐴
contain no “exposed” bound variables, i.e. 𝐴 is syntactically valid on its own, without
having to appear under an abstraction. Second, we introduce the conversion terms
“κ(𝑡, 𝛼)”, which will serve to record the variables used to derive the equality along
which 𝑡 has been converted.
The expressions of syntactic classes EqTy and EqTm are the assumption sets,

which are finite sets of free and bound variables, and metavariables. As we are already
using the curly braces for abstraction, we write finite set comprehension as {| · · · |}.
Assumption sets record the variables and metavariables that are used in a derivation
of an equality judgement but may not appear in the boundary of the conclusion.
We ought to be a bit careful about occurrences of variables, since the free variables

may occur in variable annotations, and the metavariables in boundary annotations.
Figure 3.2, the context-free analogue of Fig. 2.2, shows the definitions of free, bound
and metavariable occurrences. Note the difference between fv0(𝑒), which collects
only the free variable occurrences not appearing in a type annotation, and fv(𝑒) which
collects them all. Bound variables need not be collected from annotations, as they
cannot appear there.
The collection of all free, bound and metavariables occurring in an expression

is its assumption set asm(𝑒). Sometimes we write asm(𝑒1, . . . , 𝑒𝑛) for the union⋃︁
𝑖 asm(𝑒𝑖).

3.1.1.4 Substitution and syntactic equality

We must review substitution and syntactic equality, because they are affected by
annotations, assumption sets, and conversion terms.
There are two kinds of substitutions. An abstraction 𝑒[𝑥/a𝐴] transforms the free

variable a𝐴 in 𝑒 to a bound variable 𝑥, whereas a substitution 𝑒[𝑠/𝑥] replaces the bound
variable 𝑥with the term 𝑠. These are shown in Fig. 3.3. Note that an abstraction 𝑒[𝑥/a𝐴]
is only valid when a𝐴 does not appear in any type annotation in 𝑒, a𝐴 ∉ fvt(𝑒), because
type annotations cannot refer to bound variables. Consequently, abstraction of several
variables must be carried out in the reverse order of their dependencies. We abbreviate
a series of abstractions ((𝑒[𝑥1/a𝐴1

1]) · · ·) [𝑥𝑛/a𝐴𝑛
𝑛] as 𝑒[𝑥1/a𝐴1

1 , . . . , 𝑥𝑛/a𝐴𝑛
𝑛] or just

𝑒[𝑥/a⃗𝐴𝑛

𝑛]. Similarly, a series of substitutions ((𝑒[𝑠1/𝑥1]) · · ·) [𝑠𝑛/𝑥𝑛] is written
𝑒[𝑠1/𝑥1, . . . , 𝑠𝑛/𝑥𝑛] or just 𝑒[�⃗�/𝑥].
Syntactic equality is treated in a standard way, we only have to keep in mind the

fact that symbols are considered syntactically equal if the bare symbols are equal and
their annotations are equal. More interestingly, since conversion terms and assumption
sets carry proof-irrelevant information, they should be ignored in certain situations.
For this purpose, define the erasure ⌊𝑒⌋ to be the raw expression 𝑒 with the assumption
sets and conversion terms removed:

⌊a𝐴⌋ = a𝐴, ⌊𝑥⌋ = 𝑥, ⌊κ(𝑡, 𝛼)⌋ = ⌊𝑡⌋, ⌊𝛼⌋ = ★, ⌊{𝑥}𝑒⌋ = {𝑥}⌊𝑒⌋,
⌊S(𝑒1, . . . , 𝑒𝑛)⌋ = S(⌊𝑒1⌋, . . . , ⌊𝑒𝑛⌋), ⌊MB (𝑡1, . . . , 𝑡𝑛)⌋ = MB (⌊𝑡1⌋, . . . , ⌊𝑡𝑛⌋).

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 79

Free variables not in typing annotations:

fv0 (a𝐴) = {|a𝐴 |}, fv0 (𝑥) = {| |}, fv0 ({𝑥}𝑒) = fv0 (𝑒),
fv0 (S(𝑒1, . . . , 𝑒𝑛)) = fv0 (𝑒1) ∪ · · · ∪ fv0 (𝑒𝑛),

fv0 (MB (𝑡1, . . . , 𝑡𝑛)) = fv0 (𝑡1) ∪ · · · ∪ fv0 (𝑡𝑛),
fv0 (κ(𝑡, 𝛼)) = fv0 (𝑡) ∪ fv0 (𝛼),

fv0 (𝛼) = {|a𝐴 | a𝐴 ∈ 𝛼 |},

Free variables only in typing annotations:

fvt(𝑒) = ⋃︁{|fv(𝐴) | a𝐴 ∈ fv0 (𝑒) |}

Free variables:

fv(𝑒) = fv0 (𝑒) ∪ fvt(𝑒).

Bound variables:

bv(a𝐴) = {| |}, bv(𝑥) = {|𝑥 |}, bv({𝑥}𝑒) = bv(𝑒) \ {|𝑥 |},
bv(S(𝑒1, . . . , 𝑒𝑛)) = bv(𝑒1) ∪ · · · ∪ bv(𝑒𝑛),

bv(MB (𝑡1, . . . , 𝑡𝑛)) = bv(𝑡1) ∪ · · · ∪ bv(𝑡𝑛),
bv(κ(𝑡, 𝛼)) = bv(𝑡) ∪ bv(𝛼),

bv(𝛼) = {|𝑥 | 𝑥 ∈ 𝛼 |}.

Metavariables:

mv(a𝐴) = mv(𝐴), mv(𝑥) = {| |}, mv({𝑥}𝑒) = mv(𝑒),
mv(S(𝑒1, . . . , 𝑒𝑛)) = mv(𝑒1) ∪ · · · ∪ mv(𝑒𝑛),

mv(MB (𝑡1, . . . , 𝑡𝑛)) = {|MB |} ∪ mv(B) ∪ mv(𝑡1) ∪ · · · ∪ mv(𝑡𝑛),
mv(κ(𝑡, 𝛼)) = mv(𝑡) ∪ mv(𝛼),

mv(𝛼) = {|MB | MB ∈ 𝛼 |} ∪⋃︁{|mv(𝐴) | a𝐴 ∈ 𝛼 |}
∪⋃︁{|mv(B) | MB ∈ 𝛼 |}.

mv(□ type) = {| |}, mv(□ : 𝐴) = mv(𝐴),
mv(𝐴 ≡ 𝐵 by □) = mv(𝐴) ∪ mv(𝐵),

mv(𝑠 ≡ 𝑡 : 𝐴 by □) = mv(𝑠) ∪ mv(𝑡) ∪ mv(𝐴),
mv({𝑥:𝐴}B) = mv(𝐴) ∪ mv(B).

Assumption sets:

asm(𝑒) = fv(𝑒) ∪ bv(𝑒) ∪ mv(𝑒).

Figure 3.2: Context-free variable occurrences and assumption sets

80 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Abstraction:

a𝐴[𝑥/a𝐴] = 𝑥, 𝑦[𝑥/a𝐴] = 𝑦,
𝑏𝐵 [𝑥/a𝐴] = 𝑏𝐵 if a𝐴 ≠ 𝑏𝐵 and a𝐴 ∉ fvt(𝐵)

S(𝑒1, . . . , 𝑒𝑛) [𝑥/a𝐴] = S(𝑒1 [𝑥/a𝐴], . . . , 𝑒𝑛 [𝑥/a𝐴]),
MB (𝑡1, . . . , 𝑡𝑛) [𝑥/a𝐴] = MB (𝑡1 [𝑥/a𝐴], . . . , 𝑡𝑛 [𝑥/a𝐴]),

κ(𝑡, 𝛼) [𝑥/a𝐴] = κ(𝑡 [𝑥/a𝐴], 𝐴[𝑥/a𝐴])𝛼[𝑥/a𝐴],
({𝑦}𝑒) [𝑥/a𝐴] = {𝑦}(𝑒[𝑥/a𝐴]) if 𝑥 ≠ 𝑦,

𝛼[𝑥/a𝐴] = 𝛼 if a𝐴 ∉ 𝛼,

𝛼[𝑥/a𝐴] = (𝛼 \ {|a𝐴 |}) ∪ {|𝑥 |} if a𝐴 ∈ 𝛼 and a𝐴 ∉ fvt(𝛼),

Substitution:

a𝐴[𝑠/𝑥] = a𝐴, 𝑥 [𝑠/𝑥] = 𝑠, 𝑦[𝑠/𝑥] = 𝑦 if 𝑥 ≠ 𝑦,
S(𝑒1, . . . , 𝑒𝑛) [𝑠/𝑥] = S(𝑒1 [𝑠/𝑥], . . . , 𝑒𝑛 [𝑠/𝑥])

MB (𝑡1, . . . , 𝑡𝑛) [𝑠/𝑥] = MB (𝑡1 [𝑠/𝑥], . . . , 𝑡𝑛 [𝑠/𝑥])
κ(𝑡, 𝛼) [𝑠/𝑥] = κ(𝑡 [𝑠/𝑥], 𝛼[𝑠/𝑥])
({𝑦}𝑒) [𝑠/𝑥] = {𝑦}(𝑒[𝑠/𝑥])

𝛼[𝑠/𝑥] = 𝛼 if 𝑥 ∉ 𝛼
𝛼[𝑠/𝑥] = (𝛼 \ {|𝑥 |}) ∪ asm(𝑠) if 𝑥 ∈ 𝛼.

Figure 3.3: Abstraction and substitution

The mapping 𝑒 ↦→ ⌊𝑒⌋ takes the context-free raw syntax of Fig. 3.1 to the type-theoretic
raw syntax of Fig. 2.1 where the variables a𝐴 and the metavariables MB are construed
as atomic symbols, i.e. their annotations are part of the symbol name.

3.1.1.5 Judgements and boundaries

The lower part of Fig. 3.1 summarizes the syntax of context-free judgements and
boundaries. Apart from not having contexts, type judgements “𝐴 type” and term
judgements “𝑡 : 𝐴” are as before. Equality judgements aremodified to carry assumption
sets: a type equality takes the form “𝐴 ≡ 𝐵 by 𝛼” and a term equality “𝑠 ≡ 𝑡 : 𝐴 by 𝛼”.

Boundaries do not change, except of course that they have no contexts. The head
of a boundary is filled like before, except that assumption sets are used instead of
dummy values, see Fig. 3.4.

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 81

Filling the placeholder with a head:

(□ type) 𝐴 = (𝐴 type)
(□ : 𝐴) 𝑡 = (𝑡 : 𝐴)

(𝐴 ≡ 𝐵 by □) 𝑒 = (𝐴 ≡ 𝐵 by asm(𝑒))
(𝑠 ≡ 𝑡 : 𝐴 by □) 𝑒 = (𝑠 ≡ 𝑡 : 𝐴 by asm(𝑒))
({𝑥:𝐴} B) {𝑥}𝑒 = ({𝑥:𝐴} B 𝑒).

Filling the placeholder with an equality:

(□ type) 𝐴1 ≡ 𝐴2 by 𝛼 = (𝐴1 ≡ 𝐴2 by 𝛼),
(□ : 𝐴) 𝑡1 ≡ 𝑡2 by 𝛼 = (𝑡1 ≡ 𝑡2 : 𝐴 by 𝛼),

({𝑥:𝐴} B) 𝑒1 ≡ 𝑒2 by 𝛼 = ({𝑥:𝐴} B 𝑒1 ≡ 𝑒2 by 𝛼),

Figure 3.4: Context-free filling the head of a boundary

Free-variable occurrences in judgements and boundaries are defined as follows:

fv0(𝐴 type) = fv0(𝐴), fv0(𝑡 : 𝐴) = fv0(𝑡) ∪ fv0(𝐴),
fv0(𝐴 ≡ 𝐵 by 𝛼) = fv0(𝐴) ∪ fv0(𝐵) ∪ fv0(𝛼),

fv0(𝑠 ≡ 𝑡 : 𝐴 by 𝛼) = fv0(𝑠) ∪ fv0(𝑡) ∪ fv0(𝐴) ∪ fv0(𝛼),
fv0({𝑥 : 𝐴}J) = fv0(𝐴) ∪ fv0(J),

fv(J) = fv0(J) ∪ fvt(J).

We trust the reader can emulate the above definition to define the set mv(J) of
metavariable occurrences in a judgement J, as well as occurrences of free and
metavariables in boundaries.

3.1.1.6 Metavariable instantiations

Next, let us rethink how metavariable instantiations work in the presence of the newly
introduced syntactic constructs. As before an instantiation is a sequence, representing
a map,

𝐼 = ⟨MB1
1 ↦→𝑒1, . . . ,MB𝑛

𝑛 ↦→𝑒𝑛⟩

such that mv(B𝑖) ⊆ {|MB1
1 , . . . ,M

B𝑖−1
𝑖−1 |} and ar(B𝑖) = ar(𝑒𝑖), for each 𝑖 = 1, . . . , 𝑛. As

in Section 2.1.1.5, 𝐼 acts on an expression 𝑒, provided that mv(𝑒) ⊆ |𝐼 |, by replacing
metavariables with the corresponding expressions, see Fig. 3.5. Note that the action
of 𝐼 on a free variable changes the identity of the variable by acting on its typing
annotation.

82 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

𝐼∗𝑥 = 𝑥, 𝐼∗(κ(𝑡, 𝛼)) = κ(𝐼∗𝑡, 𝐼∗𝛼),
𝐼∗a𝐴 = a𝐼∗𝐴, 𝐼∗({𝑥}𝑒) = {𝑥}(𝐼∗𝑒),

𝐼∗(S(𝑒1, . . . , 𝑒𝑘)) = S(𝐼∗𝑒1, . . . , 𝐼∗𝑒𝑘),
𝐼∗(MB𝑖

𝑖
(𝑡1, . . . , 𝑡𝑚𝑖

)) = 𝐼 (M𝑖) [(𝐼∗𝑡1)/𝑥1, . . . , (𝐼∗𝑡𝑚𝑖
)/𝑥𝑚𝑖

],
𝐼∗𝛼 =

⋃︁{asm(𝐼 (M𝑖)) | MB𝑖

𝑖
∈ 𝛼}

∪ {|𝑥 | 𝑥 ∈ 𝛼 |} ∪ {|a𝐼∗𝐴 | a𝐴 ∈ 𝛼 |}.

𝐼∗(𝐴 type) = (𝐼∗𝐴 type),
𝐼∗(𝑡 : 𝐴) = (𝐼∗𝑡 : 𝐼∗𝐴),

𝐼∗(𝐴 ≡ 𝐵 by 𝛼) = (𝐼∗𝐴 ≡ 𝐼∗𝐵 by 𝐼∗𝛼),
𝐼∗({𝑥:𝐴}J) = {𝑥:𝐼∗𝐴}𝐼∗J,

𝐼∗□ = □.

Figure 3.5: The action of a metavariable instantiation

3.1.2 Context-free rules and type theories

In this section we adapt the notions of raw and finitary rules and type theories to
the context-free setting. We shall be rather telegraphic about it, as the changes are
straightforward and require little discussion.

Definition 3.1.1. A context-free raw rule 𝑅 over a signature Σ has the form

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ j

where the premises B𝑖 and the conclusion j are closed and syntactically valid over Σ,
mv(B𝑖) ⊆ {|MB1

1 , . . . ,M
B𝑖−1
𝑖−1 |} for every 𝑖 = 1, . . . , 𝑛, and mv(j) = {|MB1

1 , . . . ,M
B𝑛
𝑛 |}.

We say that 𝑅 is an object rule when j is a type or a term judgement, and an equality
rule when j is an equality judgement.

The condition mv(j) = {|MB1
1 , . . . ,M

B𝑛
𝑛 |} ensures that the conclusion of an instan-

tiation of a raw rule records all uses of variables. We shall need it in the proof of
Theorem 3.3.5.

Example 3.1.2. The context-free version of equality reflection from Example 2.1.7
is

A□ type, s□ :A
□ type

, t□ :A
□ type

, pId(A□ type,s□ :A□ type
,t□ :A□ type)

=⇒ s□ :A
□ type ≡ t□ :A

□ type
: A□ type by {|pId(A□ type,s□ :A□ type

,t□ :A□ type) |}

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 83

which is quite unreadable. We indulge in eliding annotations on any variable that is
already typed by a premise or a hypothesis, and write just

CF-Eq-Reflect
⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)

⊢ s ≡ t : A by {|p|}

As there are no contexts, we could remove ⊢ too, but we leave it there out of habit.
Note how the assumption set in the conclusion must record dependence on p, or else it
would violate the assumption set condition of Definition 3.1.1.

When formulating equality closure rules we face a choice of assumptions sets. For
example, what should 𝛾 be in the transitivity rule

⊢ 𝐴 ≡ 𝐵 by 𝛼 ⊢ 𝐵 ≡ 𝐶 by 𝛽

⊢ 𝐴 ≡ 𝐶 by 𝛾
?

Its intended purpose is to record any assumptions used in the premises but not already
recorded by 𝐴 and 𝐶, which suggests the requirement

asm(𝐴) ∪ asm(𝐵) ∪ asm(𝐶) ∪ 𝛼 ∪ 𝛽 ⊆ asm(𝐴) ∪ asm(𝐶) ∪ 𝛾.

If we replace ⊆ with = we also avoid any extraneous asumptions, which leads to the
following definition.

Definition 3.1.3. In a closure rule ([𝑝1, . . . , 𝑝𝑛], b 𝛼) whose conclusion is an equality
judgement, 𝛼 is suitable when asm(𝑝1, . . . , 𝑝𝑛) = asm(b 𝛼).

Provided that asm(b) ⊆ asm(𝑝1, . . . , 𝑝𝑛), we may always take the minimal suitable
assumption set 𝛼 = asm(𝑝1, . . . , 𝑝𝑛) \ asm(b). We do not insist on minimality, even
though an implementation might make an effort to keep the assumption sets small,
because minimality is not preserved by instantiations, whereas suitability is. We shall
indicate the suitability requirement in an equality closure rule by stating it as the side
condition “𝛼 suitable”.

Definition 3.1.4. A context-free raw rule-boundary over a signature Σ has the form

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b

where the boundaries B𝑖 and b are closed and syntactically valid over Σ, mv(B𝑖) ⊆
{|MB1
1 , . . . ,M

B𝑖−1
𝑖−1 |} for every 𝑖 = 1, . . . , 𝑛, and mv(b) ⊆ {|MB1

1 , . . . ,M
B𝑛
𝑛 |}. We say

that 𝑅 is an object rule-boundary when b is an object boundary, and an equality
rule-boundary when b is an equality boundary.

Definition 3.1.5. Given an object rule-boundary

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b

84 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

over Σ, the associated symbol arity is (𝑐, [ar(B1), . . . , ar(B𝑛)]), where 𝑐 ∈ {Ty, Tm}
is the syntactic class of b. The associated symbol rule for S ∉ |Σ| is the raw rule

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b S(ˆ︁MB1

1 , . . . ,
ˆ︁MB𝑛
𝑛)

over the extended signature ⟨Σ,S ↦→(𝑐, [ar(B1), . . . , ar(B𝑛)])⟩, where ˆ︁MB is the
generic application of the metavariable MB, defined as:

1. ˆ︁MB = {𝑥1} · · · {𝑥𝑘 }MB (𝑥1, . . . , 𝑥𝑘) if ar(B) = (𝑐, 𝑘) and 𝑐 ∈ {Ty, Tm},

2. ˆ︁MB = {𝑥1} · · · {𝑥𝑘 }{|MB, 𝑥1, . . . , 𝑥𝑘 |} if ar(B) = (𝑐, 𝑘) and 𝑐 ∈ {EqTy,EqTm}.

Definition 3.1.6. Given an equality rule-boundary

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b,

the associated equality rule is

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b {|MB1

1 , . . . ,M
B𝑛
𝑛 |} \ asm(b) .

Definition 3.1.7. An instantiation of a raw rule

𝑅 = (MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b 𝑒)

over a signatureΣ is an instantiation 𝐼 = ⟨MB1
1 ↦→𝑒1, . . . ,MB𝑛

𝑛 ↦→𝑒𝑛⟩ of themetavariables
of 𝑅. The closure rule 𝐼∗𝑅 associated with 𝐼 and 𝑅 is ([𝑝1, . . . , 𝑝𝑛, 𝑞], 𝑟) where 𝑝𝑖 is
⊢ 𝐼 (𝑖)∗B𝑖) 𝑒𝑖 , 𝑞 is ⊢ 𝐼∗b, and 𝑟 is ⊢ 𝐼∗(b 𝑒).

A minor complication arises when congruence rules (Definition 2.1.13) are
adapted to the context-free setting, because conversions must be inserted. Consider the
congruence rule (2.1) for Π from Example 2.1.14. The premise 𝐴1 ≡ 𝐴2 ensures that
the premise {𝑥:𝐴1} 𝐵1(𝑥) ≡ 𝐵2(𝑥) is well-formed by conversion of 𝑥 on the right-hand
side from 𝐴1 to 𝐴2, thus in the context-free version of the rule we should allow for the
possibility of an explicit conversion. However, we should not enforce an unnecessary
conversion in case 𝐴1 = 𝐴2, nor should we require particular conversions, as there
may be many ways to convert a term. We therefore formulate flexible congruence
rules as follows: if an occurrence of a term 𝑡 possibly requires conversion, we allow in
its place a term 𝑡 ′ such that ⌊𝑡⌋ = ⌊𝑡 ′⌋.

Definition 3.1.8. The context-free congruence rules associated with a context-free
raw type rule

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ 𝐴 type

are closure rules, where

𝐼 = ⟨MB1
1 ↦→ 𝑓1, . . . ,MB𝑛

𝑛 ↦→ 𝑓𝑛⟩, and 𝐽 = ⟨MB1
1 ↦→𝑔1, . . . ,MB𝑛

𝑛 ↦→𝑔𝑛⟩,

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 85

of the following form:

⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛

⊢ (𝐽(𝑖)∗B𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑛

⌊𝑔′𝑖⌋ = ⌊𝑔𝑖⌋ for object boundary B𝑖

⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔′𝑖 by 𝛼𝑖 for object boundary B𝑖

𝛽 suitable

⊢ 𝐼∗𝐴 ≡ 𝐽∗𝐴 by 𝛽

Similarly, the congruence rule associated with a raw term rule

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ 𝑡 : 𝐴

are closure rules of the form

⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛

⊢ (𝐽(𝑖)∗B𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑛

⌊𝑔′𝑖⌋ = ⌊𝑔𝑖⌋ for object boundary B𝑖

⊢ (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔′𝑖 by 𝛼𝑖 for object boundary B𝑖

⊢ 𝑡 ′ : 𝐼∗𝐴 ⌊𝑡 ′⌋ = ⌊𝐽∗𝑡⌋
𝛽 suitable

⊢ 𝐼∗𝑡 ≡ 𝑡 ′ : 𝐼∗𝐴 by 𝛽

Example 3.1.9. The context-free congruence rules for Π from Example 2.1.14 take
the form

⊢ 𝐴1 type ⊢ {𝑥:𝐴1} 𝐵1 type
⊢ 𝐴2 type ⊢ {𝑥:𝐴2} 𝐵2 type

⌊𝐴′
2⌋ = ⌊𝐴2⌋ ⌊{𝑥}𝐵′

2⌋ = ⌊{𝑥}𝐵2⌋
⊢ 𝐴1 ≡ 𝐴′

2 by 𝛼1 ⊢ {𝑥:𝐴1} 𝐵1 ≡ 𝐵′
2 by 𝛼2

⊢ Π(𝐴1, {𝑥}𝐵1) ≡ Π(𝐴2, {𝑥}𝐵2) by 𝛽

where the minimal suitable 𝛽 is

(𝛼1 ∪ 𝛼2 ∪ asm(𝐴′
2, {𝑥}𝐵

′
2)) \ (asm(𝐴1, 𝐴2, {𝑥}𝐵1, {𝑥}𝐵2)).

The type expressions 𝐴′
2 and 𝐵

′
2 may be chosen in such a way that the equations

⊢ 𝐴1 ≡ 𝐴′
2 by 𝛼1 and ⊢ {𝑥:𝐴1} 𝐵1 ≡ 𝐵′

2 by 𝛼2 are well-typed, so long as they match
𝐴2 and 𝐵2 up to erasure. In this case, we expect to be able to directly use 𝐴2 for 𝐴′

2.
The equation ⊢ {𝑥:𝐴1} 𝐵1 ≡ 𝐵2 by 𝛼2 where we use 𝐵2 instead of 𝐵′

2 is not obviously
well-typed, as 𝐵2 is a family over 𝐴2 rather than 𝐴1. Intuitively, 𝐵′

2 should thus be 𝐵2
where uses of 𝑥 have to first convert along the equation 𝐴1 ≡ 𝐴2 by 𝛼1.

The context-free metavariable closure rules are in direct analogy with the usual
ones from Definition 2.1.15:

86 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Definition 3.1.10. The context-free metavariable rules associated with the metavari-
able MB where B = ({𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} b) are the closure rules

CF-Meta
⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢ b [�⃗�/𝑥]

⊢ (b [�⃗�/𝑥])MB (�⃗�)

where 𝑥 = (𝑥1, . . . , 𝑥𝑚), �⃗� = (𝑡1, . . . , 𝑡𝑚). In the second line of premises, we
thus substitute the preceding term arguments 𝑡1, . . . , 𝑡 𝑗−1 for the bound variables
𝑥1, . . . , 𝑥 𝑗−1 in each type 𝐴 𝑗 . The last premise ensures the well-formedness of the
boundary of the conclusion, just like the definition of the closure rule associated to a
raw rule (Def. 2.1.8).
Furthermore, if b is an object boundary, then the metavariable congruence rules

for MB are the closure rules CF-Meta-Congr-Ty and CF-Meta-Congr-Tm displayed
in Fig. 3.6.

The following definition of context-free raw type theories is analogous to Defini-
tion 2.1.16, except that we have to use the context-free versions of structural rules.

Definition 3.1.11. A context-free raw type theory 𝑇 over a signature Σ is a family of
context-free raw rules, called the specific rules of 𝑇 . The associated deductive system
of 𝑇 consists of:

1. the structural rules over Σ:

a) the variable, metavariable, metavariable congruence, and abstraction
closure rules (Fig. 3.6),

b) the equality closure rules (Fig. 3.7),
c) the boundary closure rules (Fig. 3.8);

2. the instantiations of the specific rules of 𝑇 (Definition 3.1.7);

3. for each specific object rule of 𝑇 , the instantiations of the associated congruence
rule (Definition 3.1.8).

We write ⊢𝑇 J when ⊢ J is derivable with respect to the deductive system associated
to 𝑇 , and similarly for ⊢𝑇 B.

The formulations of the abstraction rules CF-Abstr and CF-Bdry-Abstr are
suitable for the backward-chaining style of proof, because their conclusions take a
general form. For forward-chaining, we may derive abstraction rules with premises in
general form as follows:

CF-Abstr-Fwd
⊢ 𝐴 type ⊢ J a𝐴 ∉ fvt(J)

⊢ {𝑥:𝐴} J[𝑥/a𝐴]

CF-Bdry-Abstr-Fwd
⊢ 𝐴 type ⊢ B a𝐴 ∉ fvt(B)

⊢ {𝑥:𝐴} B[𝑥/a𝐴]

3.1. CONTEXT-FREE FINITARY TYPE THEORIES 87

The side condition a𝐴 ∉ fvt(J) ensures that a𝐴 ∉ fv(J[𝑥/a𝐴]), hence CF-Abstr-Fwd
can be derived as the instance of CF-Abstr

⊢ 𝐴 type a𝐴 ∉ fv(J[𝑥/a𝐴]) ⊢ (J[𝑥/a𝐴]) [a𝐴/𝑥]
⊢ {𝑥:𝐴}J[𝑥/a𝐴]

and similarly for boundary abstractions.

CF-Var

⊢ a𝐴 : 𝐴

CF-Abstr
⊢ 𝐴 type a𝐴 ∉ fv(J) ⊢ J[a𝐴/𝑥]

⊢ {𝑥:𝐴} J

CF-Meta
⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢ b [�⃗�/𝑥]

⊢ (b [�⃗�/𝑥]) M{ �⃗�:�⃗�}b (�⃗�)

CF-Meta-Congr-Ty
B = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ type

⊢ 𝑠 𝑗 : 𝐴[�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢ 𝑡 𝑗 : 𝐴[�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⌊𝑡 𝑗⌋ = ⌊𝑡 ′𝑗⌋ for 𝑗 = 1, . . . , 𝑚

⊢ 𝑠 𝑗 ≡ 𝑡 ′𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] by 𝛼 𝑗 for 𝑗 = 1, . . . , 𝑚

𝛽 suitable

⊢ MB (�⃗�) ≡ MB (�⃗�) by 𝛽

CF-Meta-Congr-Tm
B = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ : 𝐵
⊢ 𝑠 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⌊𝑡 𝑗⌋ = ⌊𝑡 ′𝑗⌋ for 𝑗 = 1, . . . , 𝑚

⊢ 𝑠 𝑗 ≡ 𝑡 ′𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] by 𝛼 𝑗 for 𝑗 = 1, . . . , 𝑚
⊢ 𝑣 : 𝐵[�⃗�/𝑥] ⌊MB (�⃗�)⌋ = ⌊𝑣⌋ 𝛽 suitable

⊢ MB (�⃗�) ≡ 𝑣 : 𝐵[�⃗�/𝑥] by 𝛽

Figure 3.6: Context-free free variable, metavariable, and abstraction closure rules

The context-free analogues of the auxiliary judgements ⊢ Θ mctx and Θ ⊢ Γ vctx
are as follows. For simplicity we define a single notion that encompasses the
well-formedness of all annotations.

88 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

CF-EqTy-Refl
⊢ 𝐴1 type ⊢ 𝐴2 type ⌊𝐴1⌋ = ⌊𝐴2⌋

⊢ 𝐴1 ≡ 𝐴2 by {| |}

CF-EqTy-Sym
⊢ 𝐴 ≡ 𝐵 by 𝛼
⊢ 𝐵 ≡ 𝐴 by 𝛼

CF-EqTy-Trans
⊢ 𝐴 ≡ 𝐵 by 𝛼 ⊢ 𝐵 ≡ 𝐶 by 𝛽 𝛾 suitable

⊢ 𝐴 ≡ 𝐶 by 𝛾

CF-EqTm-Refl
⊢ 𝑡1 : 𝐴 ⊢ 𝑡2 : 𝐴 ⌊𝑡1⌋ = ⌊𝑡2⌋

⊢ 𝑡1 ≡ 𝑡2 : 𝐴 by {| |}

CF-EqTm-Sym
⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼
⊢ 𝑡 ≡ 𝑠 : 𝐴 by 𝛼

CF-EqTm-Trans
⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 ⊢ 𝑡 ≡ 𝑢 : 𝐴 by 𝛽 𝛾 suitable

⊢ 𝑠 ≡ 𝑢 : 𝐴 by 𝛾

CF-Conv-Tm
⊢ 𝑡 : 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼

asm(𝑡, 𝐴, 𝐵, 𝛼) = asm(𝑡, 𝐵, 𝛽)
⊢ κ(𝑡, 𝛽) : 𝐵

CF-Conv-EqTm
⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 ⊢ 𝐴 ≡ 𝐵 by 𝛽

asm(𝑠, 𝐴, 𝐵, 𝛽) = asm(𝑠, 𝐵, 𝛾)
asm(𝑡, 𝐴, 𝐵, 𝛽) = asm(𝑡, 𝐵, 𝛿)
⊢ κ(𝑠, 𝛾) ≡ κ(𝑡, 𝛿) : 𝐵 by 𝛼

Figure 3.7: Context-free closure rules for equality

CF-Bdry-Ty

⊢ □ type

CF-Bdry-Tm
⊢ 𝐴 type
⊢ □ : 𝐴

CF-Bdry-EqTy
⊢ 𝐴 type ⊢ 𝐵 type

⊢ 𝐴 ≡ 𝐵 by □

CF-Bdry-EqTm
⊢ 𝐴 type ⊢ 𝑠 : 𝐴 ⊢ 𝑡 : 𝐴

⊢ 𝑠 ≡ 𝑡 : 𝐴 by □

CF-Bdry-Abstr
⊢ 𝐴 type a𝐴 ∉ fv(B) ⊢ B[a𝐴/𝑥]

⊢ {𝑥:𝐴} B

Figure 3.8: Well-formed context-free abstracted boundaries

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 89

Definition 3.1.12. An expression 𝑒 has well-typed annotations when ⊢ B for every
MB ∈ asm(𝑒) and ⊢ 𝐴 type for every a𝐴 ∈ asm(𝑒). The notion evidently extends to
judgements and boundaries.

The context-free version of finitary rules and type theories is quite similar to the
original one.

Definition 3.1.13. Given a raw theory 𝑇 over a signature Σ, a context-free raw rule
MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b 𝑒 over Σ is finitary over 𝑇 when ⊢𝑇 B𝑖 for 𝑘 = 1, . . . , 𝑛, and ⊢𝑇 b,

Similarly, a raw rule-boundary MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ b is finitary over 𝑇 when ⊢𝑇 B𝑖 for

𝑘 = 1, . . . , 𝑛, and ⊢𝑇 b.
A context-free finitary type theory is a context-free raw type theory (𝑅𝑖)𝑖∈𝐼 for

which there exists a well-founded order (𝐼, ≺) such that each 𝑅𝑖 is finitary over (𝑅 𝑗) 𝑗≺𝑖 .

Definition 3.1.14. A context-free finitary type theory is standard if its specific object
rules are symbol rules, and each symbol has precisely one associated rule.

3.2 Metatheorems about context-free theories
Themetatheorems fromSection 2.2 carry over to the context-free setting. Unfortunately,
there seems to be no wholesale method for transferring the proofs, and one simply has
to adapt themmanually to the context-free setting. The process is quite straightforward,
so we indulge in omitting the details.

3.2.1 Metatheorems about context-free raw theories

In the context-free setting, a renaming is still an injective map 𝜌 taking unannotated
symbols to unannotated symbols. Its action 𝜌∗𝑒 on an expression 𝑒 recursively
descends into 𝑒, including into variable annotations, i.e. 𝜌∗(a𝐴) = 𝜌(a)𝜌∗𝐴 and
𝜌∗(MB) = 𝜌(M)𝜌∗B. The action is extended to judgements and boundaries in a
straightforward manner. Renaming preserves the size of an expression, as long as all
symbols are deemed to have the same size.

Proposition 3.2.1 (Context-free renaming). If a context-free raw type theory derives
a judgement or a boundary, then it also derives its renaming.

Proof. Straightforward induction on the derivation. □

Weakening (Proposition 2.2.2) is not applicable, as there is no context that could
be weakened, and no variable ever occurs in the conclusion of a judgement without it
being used in the derivation.
We next prove admissibility of substitution rules. We take a slightly different

route than in Section 2.2.1 in order to avoid substituting a term for a free variable, as
that changes type annotations and therefore the identity of variables. Lemmas 3.2.2
and 3.2.3 are proved by mutual structural induction, with a further structural induction
within each lemma.

90 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Lemma 3.2.2. If a context-free raw type theory derives

⊢ {𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} J and
⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

then it derives ⊢ J[�⃗�/𝑥].

Proof. We may invert the derivation of ⊢ {𝑥:�⃗�} J to obtain a series of applica-
tions of CF-Abstr, yielding types 𝐴′

1, . . . , 𝐴
′
𝑛 and (suitably fresh) free variables

a𝐴′
1
1 , . . . , a

𝐴′
𝑛

𝑛 where, for 𝑖 = 1, . . . , 𝑛,

𝐴′
𝑖 = 𝐴𝑖 [a

𝐴′
1
1 /𝑥1, . . . , a

𝐴′
𝑖−1

𝑖−1 /𝑥𝑖−1] and ⊢ 𝐴′
𝑖 type.

At the top of the abstractions sits a derivation 𝐷 of the judgement

J[a𝐴′
1
1 /𝑥1, . . . , a𝐴′

𝑛
𝑛 /𝑥𝑛] .

The proof proceeds by induction on the derivation 𝐷, i.e. we only ever apply the
induction hypotheses to derivations that have a series of abstractions, and on the top a
derivation that is structurally smaller than 𝐷. Let us write

𝜃 = [a𝐴′
1
1 /𝑥1, . . . , a𝐴′

𝑛
𝑛 /𝑥𝑛],

𝜁 = [𝑥𝑛/a𝐴′
𝑛

𝑛 , . . . , 𝑥1/a𝐴′
1
1],

𝜏 = [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] .

Case CF-Var: Suppose the derivation ends with the variable rule

⊢ b𝐵 : 𝐵

If b𝐵 is one of a𝐴′
𝑖

𝑖
then J = {𝑥:�⃗�} 𝑥𝑖 : 𝐴𝑖, hence J𝜏 = (𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]), which is

derivable by assumption. If b𝐵 is none of a𝐴𝑖

𝑖
’s then a𝐴𝑖

𝑖
∉ fv(𝐵) by freshness, hence

J𝜏 = (b𝐵 : 𝐵), so we may reuse the same variable rule.
Case CF-Abstr: Suppose the derivation ends with an abstraction

⊢ (𝐴𝑛+1𝜃) type a𝐴𝑛+1 𝜃
𝑛+1 ∉ fv(J′𝜃) (J′𝜃) [a𝐴𝑛+1 𝜃

𝑛+1 /𝑥𝑛+1]
⊢ {𝑥𝑛+1:𝐴𝑛+1𝜃} (J′𝜃)

We extend the substitution by 𝑡𝑛+1 = a𝐴𝑛+1𝜏
𝑛+1 and apply the induction hypothesis to the

abstracted derivation of the right-hand premise, whose conclusion is {𝑥 : �⃗�}{𝑥𝑛+1 :
𝐴𝑛+1} J′, to obtain ⊢ J′[𝜏, 𝑡𝑛+1/𝑥𝑛+1]. We may abstract a𝐴𝑛+1𝜏

𝑛+1 to get the desired
judgement ⊢ {𝑥𝑛+1:𝐴𝑛+1𝜏} (J′𝜏).
All other cases: The remaining cases all follow the same pattern: abstract the premises,
apply the induction hypotheses to them, and conclude with the same rule. We

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 91

demonstrate how this works in case of 𝐷 ending with an instance of a specific rule
𝑅 = (MB1

1 , . . . ,M
B𝑛
𝑛 =⇒ b 𝑒) instantiated with 𝐼 = ⟨MB1

1 ↦→𝑒1, . . . ,MB𝑛
𝑛 ↦→𝑒𝑛⟩:

⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛

⊢ 𝐼∗b
⊢ 𝐼∗(b 𝑒)

Define the instantiation 𝐽 of the premises of 𝑅 by 𝐽 (M𝑖) = 𝑒′𝑖 = (𝑒𝑖𝜁)𝜏. Note that
⊢ (𝐼∗(b 𝑒))𝜏 equals ⊢ 𝐽∗(b 𝑒), therefore we may derive it by 𝐽∗𝑅. The last premise
of 𝐽∗𝑅 is ⊢ (𝐼∗b)𝜏, and it follows by Lemma 3.2.3 applied to the last premise of 𝐼∗𝑅.
For 𝑖 = 1, . . . , 𝑛, abstract ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 to

⊢ {𝑥:�⃗�} ((𝐼 (𝑖)∗B𝑖) 𝑒𝑖)𝜁

and apply the induction hypothesis to derive ⊢ (((𝐼 (𝑖)∗B𝑖) 𝑒𝑖)𝜁)𝜏, which equals
⊢ (((𝐼 (𝑖)∗B𝑖)𝜁)𝜏) (𝑒𝑖𝜁)𝜏 and because B𝑖 does not contain any free variables, also to
⊢ (𝐽(𝑖)∗B𝑖) 𝑒′𝑖 . □

Lemma 3.2.3. If a context-free raw type theory derives

⊢ {𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} B and
⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

then it derives ⊢ B[�⃗�/𝑥].

Proof. We proceed as in the proof of Lemma 3.2.2, where CF-Bdry-Abstr is treated
like CF-Abstr, and the remaining ones invert to Lemma 3.2.2. □

Theorem 3.2.4 (Context-free admissibility of substitution). In a context-free raw type
theory, the following substitution rules are admissible:

CF-Subst
⊢ {𝑥:𝐴} J ⊢ 𝑡 : 𝐴

⊢ J[𝑡/𝑥]

CF-Bdry-Subst
⊢ {𝑥:𝐴} B ⊢ 𝑡 : 𝐴

⊢ B[𝑡/𝑥]

Proof. The admissibility of CF-Subst and CF-Bdry-Subst corresponds to the case
𝑛 = 1 of Lemma 3.2.2 and Lemma 3.2.3, respectively. □

Before addressing the context-free versions of TT-Subst-EqTy and TT-Subst-
EqTm, we prove the context-free presuppositivity theorem.
Of course, presuppositivity holds in the context-free setting as well.

Theorem 3.2.5 (Context-free presuppositivity). If a context-free raw type theory
derives ⊢ B 𝑒 and B 𝑒 has well-typed annotations, then it derives ⊢ B.

92 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Proof. The proof proceeds by induction on the number of metavariables appearing
in the judgement and the derivation of ⊢ B 𝑒 . That is, each appeal to the induction
hypothesis reduces the number of metavariables, or is applied to a subderivation.
Case CF-Var: Immediate, by the well-typedness of annotations.
Case CF-Meta: Immedate as the desired judgement is a premise of the rule.
Case CF-Meta-Congr-Tm: Suppose B = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ : 𝐵 and consider a
derivation ending with the metavariable congruence rule

for 𝑘 = 1, . . . , 𝑚:

⊢ 𝑠𝑘 : 𝐴𝑘 [�⃗� (𝑘)/𝑥 (𝑘)]
⊢ 𝑡𝑘 : 𝐴𝑘 [�⃗� (𝑘)/𝑥 (𝑘)]
⌊𝑡𝑘⌋ = ⌊𝑡 ′𝑘⌋
⊢ 𝑠𝑘 ≡ 𝑡 ′𝑘 : 𝐴𝑘 [�⃗� (𝑘)/𝑥 (𝑘)] by 𝛼𝑘

⊢ 𝑣 : 𝐵[�⃗�/𝑥] ⌊MB (�⃗�)⌋ = ⌊𝑣⌋
𝛽 suitable

⊢ MB (�⃗�) ≡ 𝑣 : 𝐵[�⃗�/𝑥] by 𝛽

The presuppositions are derived as follows:

• ⊢ 𝐵[�⃗�/𝑥] type follows by CF-Subst from ⊢ 𝑥:�⃗� 𝐵 type, which in turn follows
by inversion on ⊢ B.

• ⊢ MB (�⃗�) : 𝐵[�⃗�/𝑥] follows by CF-Meta.

• 𝑣 : 𝐵[�⃗�/𝑥] is a premise.

Case CF-Abstr: Consider an abstraction

⊢ 𝐴 type a𝐴 ∉ fv(B 𝑒) ⊢ (B 𝑒) [a𝐴/𝑥]
⊢ {𝑥:𝐴} B 𝑒

By induction hypothesis on the last premise, we obtain ⊢ B[a𝐴/𝑥] after which we
apply CF-Bdry-Abstr.
Case of a specific rule: Immediate, as the well-formedness of the boundary is a
premise.
Case of a congruence rule: Consider a congruence rulles associated with an object
rule 𝑅 and instantiated with 𝐼 and 𝐽, as in Definition 3.1.8.
If 𝑅 concludes with ⊢ 𝐴 type, the presuppositions are ⊢ 𝐼∗𝐴 type and ⊢ 𝐽∗𝐴 type,

which are derivable by 𝐼∗𝑅 and 𝐽∗𝑅, respectively.
If 𝑅 concludes with ⊢ 𝑡 : 𝐴, the presuppositions are ⊢ 𝐼∗𝐴 type, ⊢ 𝐼∗𝑡 : 𝐼∗𝐴, and

⊢ 𝑡 ′ : 𝐼∗𝐴. We derive the first one by applying the induction hypothesis to the premise
⊢ 𝑡 ′ : 𝐼∗𝐴, the second one by 𝐼∗𝑅, while the third one is a premise.

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 93

Cases CF-EqTy-Refl, CF-EqTy-Sym, CF-EqTy-Trans, CF-EqTm-Refl, CF-EqTm-
Sym, CF-EqTm-Trans: These are all dispensed with straightforward appeals to the
induction hypotheses.
Case CF-Conv-Tm: Consider a term conversion

⊢ 𝑡 : 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼
asm(𝑡, 𝐴, 𝐵, 𝛼) = asm(𝑡, 𝐵, 𝛽)

⊢ κ(𝑡, 𝛽) : 𝐵

By induction hypothesis for the second premise, ⊢ 𝐵 type.
Case CF-Conv-EqTm: Consider a term equality conversion

⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 ⊢ 𝐴 ≡ 𝐵 by 𝛽
asm(𝑠, 𝐴, 𝐵, 𝛽) = asm(𝑠, 𝐵, 𝛾)
asm(𝑡, 𝐴, 𝐵, 𝛽) = asm(𝑡, 𝐵, 𝛿)
⊢ κ(𝑠, 𝛾) ≡ κ(𝑡, 𝛿) : 𝐵 by 𝛼

As in the previous case, the induction hypothesis for the second premise provides
⊢ 𝐵 type. The induction hypothesis for the first premise yields

⊢ 𝑠 : 𝐴 and ⊢ 𝑡 : 𝐴

We may convert these to ⊢ κ(𝑠, 𝛾) : 𝐵 and ⊢ κ(𝑡, 𝛿) : 𝐵 using the second premise. □

Let us now turn to meta-theorems stating that equal substitutions act equally.
Once again we need to account for insertion of conversions. In congruence rules
such conversions appeared in premises: equations associated to object premises of
the shape (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔′𝑖 by 𝛼𝑖 referred to a primed version of 𝑔𝑖 to allow the use
of conversions in 𝑔𝑖. In the following lemma, conversions appear in the result of a
substitution. Therefore, rather than being permissive about insertions of conversions,
we are faced with showing that it is possible to insert them. Similarly to Lemma 2.2.7,
we prove that equal terms can be substituted into a judgement to yield equal results,
but the right hand side of these results is only prescribed up to erasure, namely as 𝐶 ′

and 𝑢′.

Lemma 3.2.6. If a context-free raw type theory derives

⊢ {𝑥1:𝐴1} · · · {𝑥𝑛:𝐴𝑛} J

where {𝑥:�⃗�} J has well-typed annotations, and for 𝑖 = 1, . . . , 𝑛

⊢ 𝑠𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]
⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]
⊢ 𝑠𝑖 ≡ 𝑡 ′𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] by 𝛼𝑖 and ⌊𝑡 ′𝑖⌋ = ⌊𝑡𝑖⌋ . (3.1)

then:

94 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

1. if J = ({�⃗�:�⃗�} 𝐶 type) then there are 𝛾 and 𝐶 ′ such that ⌊𝐶 [�⃗�/𝑥]⌋ = ⌊𝐶 ′⌋,

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝐶 [�⃗�/𝑥] ≡ 𝐶 ′ by 𝛾,

2. if J = ({�⃗�:�⃗�} 𝑢 : 𝐶) then there are 𝛿 and 𝑢′ such that ⌊𝑢[�⃗�/𝑥]⌋ = ⌊𝑢′⌋ and

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝑢[�⃗�/𝑥] ≡ 𝑢′ : 𝐶 [�⃗�/𝑥] by 𝛿.

Furthermore, no extraneous assumptions are introduced by 𝛾, 𝐶 ′, 𝛿 and 𝑢′:

asm({�⃗�}𝛾, {�⃗�}𝐶 ′, {�⃗�}𝛿, {�⃗�}𝑢′) ⊆ asm(�⃗�, �⃗�, �⃗� ′, �⃗�, {𝑥:�⃗�} J).

Proof. As in the proof of Lemma 3.2.2, we invert the derivation of ⊢ {𝑥:�⃗�} J to
obtain types 𝐴′

1, . . . , 𝐴
′
𝑛 and (suitably fresh) free variables a𝐴′

1
1 , . . . , a

𝐴′
𝑛

𝑛 where, for
𝑖 = 1, . . . , 𝑛,

𝐴′
𝑖 = 𝐴𝑖 [a

𝐴′
1
1 /𝑥1, . . . , a

𝐴′
𝑖−1

𝑖−1 /𝑥𝑖−1] and ⊢ 𝐴′
𝑖 type

and a derivation 𝐷 of the judgement

J[a𝐴′
1
1 /𝑥1, . . . , a𝐴′

𝑛

𝑖−1/𝑥𝑛] .

The proof proceeds by induction on the well-founded ordering of the rules, the number
of metavariables, with a subsidiary induction on the derivation 𝐷. That is, each appeal
to the induction hypotheses either decreases the number of metavariables appearing in
the judgement, or descends to a subderivation of 𝐷. Let us write

𝜃 = [a𝐴′
1
1 /𝑥1, . . . , a𝐴′

𝑛

𝑖−1/𝑥𝑛],
𝜎 = [𝑠1/𝑥1, . . . , 𝑠𝑛/𝑥𝑛],
𝜏 = [𝑡1/𝑥1, . . . , 𝑡𝑛/𝑥𝑛] .

Case CF-Var: Suppose the derivation ends with the variable rule

⊢ b𝐵 : 𝐵

If b𝐵 is one of a𝐴′
𝑖

𝑖
then J = {𝑥:�⃗�} 𝑥𝑖 : 𝐴𝑖 , hence (2) is satisfied by (3.1). If b𝐵 is none

of a𝐴𝑖

𝑖
’s then a𝐴𝑖

𝑖
∉ fv(𝐵) by freshness, hence (2) is satisfied by ⊢ b𝐵 ≡ b𝐵 : 𝐵 by {| |},

which holds by CF-EqTm-Refl.
Case CF-Abstr: Suppose the derivation ends with an abstraction

⊢ (𝐴𝑛+1𝜃) type a𝐴𝑛+1 𝜃
𝑛+1 ∉ fv(J𝜃) (J′𝜃) [a𝐴𝑛+1 𝜃

𝑛+1 /𝑦]
⊢ {𝑥𝑛+1:𝐴𝑛+1𝜃} (J′𝜃)

(3.2)

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 95

We may abstract the first premise to ⊢ {𝑥:�⃗�} 𝐴𝑛+1 type, apply Lemma 3.2.2 to
derive ⊢ 𝐴𝑛+1𝜏 type, and the induction hypothesis to obtain 𝛽𝑛+1 and 𝐴′ such that
⌊𝐴𝑛+1𝜏⌋ = ⌊𝐴′⌋,

⊢ 𝐴′ type and ⊢ 𝐴𝑛+1𝜎 ≡ 𝐴′ by 𝛽𝑛+1.

By CF-EqTy-Trans and CF-EqTy-Refl it follows that for some 𝛾𝑛+1 ⊆ 𝛽𝑛+1

⊢ 𝐴𝑛+1𝜎 ≡ 𝐴𝑛+1𝜏 by 𝛾𝑛+1.

Let a𝐴𝑛+1𝜎
𝑛+1 be fresh, and define

𝑠𝑛+1 = 𝑡
′
𝑛+1 = a𝐴𝑛+1𝜎

𝑛+1 , 𝑡𝑛+1 = κ(a𝐴𝑛+1𝜎
𝑛+1 , 𝛾𝑛+1), and 𝛼𝑛+1 = {| |}.

We may abstract the last premise of (3.2) to

⊢ {𝑥1:𝐴1} · · · {𝑥𝑛+1:𝐴𝑛+1} J′

apply the induction hypothesis with the given 𝑠𝑛+1, 𝑡𝑛+1 and 𝑡 ′𝑛+1 to derive either (1) or
(2), and abstract a𝐴𝑛+1𝜎

𝑛+1 to get the desired judgements.
Case CF-Meta: We consider the case of an object metavariable, and leave the easier
case of a type metavariable to the reader. Let B = ({�⃗�:�⃗�} □ : 𝐶), and suppose the
derivation ends with an application of the metavariable rule,

⊢ 𝑢 𝑗𝜃 : 𝐵 𝑗 [�⃗� (𝑗)𝜃/�⃗� (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢ □ : 𝐶 [�⃗�𝜃/�⃗�]
⊢ MB (�⃗�𝜃) : 𝐶 [�⃗�𝜃/�⃗�]

(3.3)

For each 𝑗 = 1, . . . , 𝑚 we may abstract the premise of (3.3) to

⊢ {𝑥:�⃗�} 𝑢 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/�⃗� (𝑗)]

and apply Lemma 3.2.2, once with �⃗� and once with �⃗�, to derive

⊢ 𝑢 𝑗𝜎 : 𝐵 𝑗 [(�⃗�𝜎) (𝑗)/�⃗� (𝑗)],
⊢ 𝑢 𝑗𝜏 : 𝐵 𝑗 [(�⃗�𝜏) (𝑗)/�⃗� (𝑗)],

where we took into account the fact that 𝐵 𝑗 does not contain any bound variables.
Also, by induction hypothesis there is 𝛿 𝑗 ⊆

⋃︁
𝑖 𝛼𝑖 and 𝑢′𝑗 such that ⌊𝑢 𝑗𝜏⌋ = ⌊𝑢′

𝑗
⌋ and

⊢ 𝑢 𝑗𝜎 ≡ 𝑢′𝑗 by 𝐵 𝑗 [(�⃗�𝜎) (𝑗)/�⃗� (𝑗)] by 𝛿 𝑗 .

Next, we invert the last premise of (3.3) and abstract it to ⊢ {𝑥:�⃗�} 𝐶 [�⃗�/�⃗�] type. By
induction hypothesis we obtain 𝛿′ ⊆ ⋃︁

𝑗 𝛿 𝑗 such that ⊢ 𝐶 [�⃗�𝜎/�⃗�] ≡ 𝐶 ′ by 𝛿′ and

96 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

⌊𝐶 ′⌋ = ⌊𝐶 [�⃗�𝜏/�⃗�]⌋, hence ⊢ 𝐶 [�⃗�𝜎/�⃗�] ≡ 𝐶 [�⃗�𝜏/�⃗�] by 𝛿 for some 𝛿 ⊆ 𝛿′. Now (2) is
satisfied by

⊢ κ(MB (�⃗�𝜏), 𝛿) : 𝐶 [�⃗�𝜎/�⃗�],
⊢ MB (�⃗�𝜎) ≡ κ(MB (�⃗�𝜏), 𝛿) : 𝐶 [�⃗�𝜎/�⃗�] by

⋃︁
𝑗 𝛿 𝑗 .

where the last judgement follows by the congruence rule for MB.
Case of a specific term rule: Suppose the derivation ends with a specific rule
𝑅 = (MB1

1 , . . . ,M
B𝑚
𝑚 =⇒ 𝑢 : 𝐵) instantiated with 𝐼 ′ = ⟨MB1

1 ↦→𝑒′1, . . . ,M
B𝑚
𝑚 ↦→𝑒′𝑚⟩:

⊢ (𝐼 ′(𝑗)∗B 𝑗) 𝑒′𝑗 for 𝑗 = 1, . . . , 𝑛

⊢ (□ : 𝐼 ′∗𝐵)
⊢ 𝐼 ′∗𝑢 : 𝐼 ′∗𝐵

Let 𝜁 = [𝑥𝑛/a𝐴′
𝑛

𝑛 , . . . , 𝑥1/a𝐴′
1
1] be the abstraction that undoes 𝜃. Define 𝑒 𝑗 = 𝑒′𝑗𝜁 and

𝐼 = 𝐼 ′𝜁 , so that 𝑒′
𝑗
= 𝑒 𝑗𝜃 and 𝐼 ′ = 𝐼𝜃, which allows us to write the above judgement as

⊢ ((𝐼 (𝑗)∗B 𝑗) 𝑒 𝑗)𝜃 for 𝑗 = 1, . . . , 𝑛

⊢ (□ : 𝐼∗𝐵)𝜃
⊢ (𝐼∗𝑢)𝜃 : (𝐼∗𝐵)𝜃

We invert the last premise, abstract to ⊢ {𝑥:�⃗�} 𝐼∗𝐵 type, and apply Lemma 3.2.2 to
derive ⊢ (𝐼∗𝐵)𝜎 type. Next, the induction hypothesis provides 𝛽 ⊆ ⋃︁

𝑖 𝛼𝑖 and 𝐵′ such
that ⌊𝐵′⌋ = ⌊(𝐼∗𝐵)𝜏⌋ and ⊢ (𝐼∗𝐵)𝜎 ≡ 𝐵′ by 𝛽. Therefore, we have 𝛽′ ⊆ 𝛽 such that

⊢ (𝐼∗𝐵)𝜎 ≡ (𝐼∗𝐵)𝜏 by 𝛽′.

It suffices to find 𝛿 ⊆ ⋃︁
𝑖 𝛼𝑖 such that

⊢ (𝐼∗𝑢)𝜎 ≡ κ((𝐼∗𝑢)𝜏, 𝛽′) : (𝐼∗𝐵)𝜎 by 𝛿.

This is precisely the conclusion of the congruence rule for 𝑅, so we derive its premises.
For any 𝑗 = 1, . . . , 𝑚 we may abstract the 𝑗-th premise to

⊢ {𝑥:�⃗�} (𝐼 (𝑗)∗B 𝑗) 𝑒 𝑗 , (3.4)

and apply Lemma 3.2.2, once with �⃗� and once with �⃗�, to derive

⊢ ((𝐼𝜎) (𝑗)∗B 𝑗) 𝑒 𝑗𝜎 and ⊢ ((𝐼𝜏) (𝑗)∗B 𝑗) 𝑒 𝑗𝜏 .

For each object premise with boundary B 𝑗 , the remaining premises are provided
precisely by the induction hypotheses.

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 97

Case of a specific type rule: Suppose the derivation ends with a specific rule
𝑅 = (MB1

1 , . . . ,M
B𝑚
𝑚 =⇒ 𝐵 type) instantiated with 𝐼 ′ = ⟨MB1

1 ↦→𝑒′1, . . . ,M
B𝑚
𝑚 ↦→𝑒′𝑚⟩:

⊢ (𝐼 ′(𝑗)∗B 𝑗) 𝑒′𝑗 for 𝑗 = 1, . . . , 𝑛
⊢ □ type

⊢ 𝐼 ′∗𝐵 type

With 𝜁 and 𝐼 as in the previous case, we may write the above as

⊢ ((𝐼 (𝑗)∗B 𝑗) 𝑒 𝑗)𝜃 for 𝑗 = 1, . . . , 𝑛

⊢ (𝐼∗𝐵)𝜃 type

where we elided the trivial boundary premise. It suffices to find 𝛾 ⊆ ⋃︁
𝑖 𝛼𝑖 such that

⊢ (𝐼∗𝐵)𝜎 ≡ (𝐼∗𝐵)𝜏 by 𝛾.

This is precisely the conclusion of the congruence rule for 𝑅, whose premises are
derived as in the previous case.

Case CF-Conv-Tm: Suppose the derivation ends with an application of the conversion
rule

⊢ 𝑢𝜃 : 𝐵𝜃 ⊢ 𝐵𝜃 ≡ 𝐶𝜃 by 𝛽𝜃

⊢ κ(𝑢𝜃, 𝛽𝜃 ∪ asm(𝐵𝜃)) : 𝐶𝜃

We abstract the first premise to ⊢ {𝑥:�⃗�} 𝑢 : 𝐵 and apply the induction hypothesis to
obtain 𝛿 ⊆ ⋃︁

𝑖 𝛼𝑖 and 𝑢′ such that ⌊𝑢′⌋ = ⌊𝑢𝜏⌋ and

⊢ 𝑢𝜎 ≡ 𝑢′ : 𝐵𝜎 by 𝛿.

We abstract the second premise to ⊢ {𝑥:�⃗�} 𝐵 ≡ 𝐶 by 𝛽, apply Lemma 3.2.2 to derive
⊢ 𝐵𝜎 ≡ 𝐶𝜎 by 𝛽𝜎, and use CF-Conv-EqTm to conclude:

⊢ κ(𝑢𝜎, 𝛽𝜎 ∪ asm(𝐵𝜎)) ≡ κ(𝑢′, 𝛽𝜎 ∪ asm(𝐵𝜎)) : 𝐶𝜎 by 𝛿. □

98 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Theorem 3.2.7. In a context-free raw type theory, the following rules are admissible:

CF-Subst-EqTy
⊢ {𝑥:�⃗�}{�⃗�:�⃗�} 𝐶 type

⊢ 𝑠𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⌊𝑡𝑖⌋ = ⌊𝑡 ′𝑖⌋ for 𝑖 = 1, . . . , 𝑛

⊢ 𝑠𝑖 ≡ 𝑡 ′𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] by 𝛼𝑖 for 𝑖 = 1, . . . , 𝑛

𝛽 suitable

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥] by 𝛽

CF-Subst-EqTm
⊢ {𝑥:�⃗�}{�⃗�:�⃗�} 𝑢 : 𝐶
⊢ 𝑠𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⌊𝑡𝑖⌋ = ⌊𝑡 ′𝑖⌋ for 𝑖 = 1, . . . , 𝑛

⊢ 𝑠𝑖 ≡ 𝑡 ′𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] by 𝛼𝑖 for 𝑖 = 1, . . . , 𝑛

𝛽 suitable

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝑢[�⃗�/𝑥] ≡ κ(𝑢[�⃗�/𝑥], 𝛽) : 𝐶 [�⃗�/𝑥] by 𝛽

Proof. Lemma 3.2.6 applied to the premises of CF-Subst-EqTy provides 𝛾 and 𝐶 ′

such that ⌊𝐶 [�⃗�/𝑥]⌋ = ⌊𝐶 ′⌋ and

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝐶 [�⃗�/𝑥] ≡ 𝐶 ′ by 𝛾. (3.5)

We would like to replace 𝐶 ′ in the right-hand side with 𝐶 [�⃗�/𝑥], which we can so long
as

⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝐶 ′ type and ⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝐶 [�⃗�/𝑥] .
The first judgement holds by Theorem 3.2.5 applied to (3.5) under the abstraction,
while the second one is a substitution instance of the first premise. This establishes
admissibility of CF-Subst-EqTy.
In case of CF-Subst-EqTm the same lemma yields 𝛿 and 𝑢′ such that ⌊𝑢[�⃗�/𝑥]⌋ =

⌊𝑢′⌋ and
⊢ {�⃗�:�⃗�[�⃗�/𝑥]} 𝑢[�⃗�/𝑥] ≡ 𝑢′ : 𝐶 [�⃗�/𝑥] by 𝛿.

We would like to replace 𝑢′ with a converted 𝑢[�⃗�/𝑥], which we can by an argument
similar to the the one above. □

Lastly, we prove the context-free counterpart of instantiation admissibility The-
orem 2.2.13. The notion of a derivable instantiation carries over easily to the
context-free setting: 𝐼 = ⟨MB1

1 ↦→𝑒1, . . . ,MB𝑛
𝑛 ↦→𝑒𝑛⟩ is derivable when ⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖

for every 𝑖 = 1, . . . , 𝑛.

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 99

Proposition 3.2.8 (Context-free admissibility of instantiation). In a raw type theory,
if ⊢ J is derivable, it has well-typed annotations, and 𝐼 is a derivable instantiation
such that mv(J) ⊆ |𝐼 |, then ⊢ 𝐼∗J is derivable, and similarly for boundaries.

Proof. We proceed by induction on the derivation of ⊢ J. We only devote attention
to the metavariable and abstraction rules, as all the other cases are straightforward.
Suppose 𝐼 = ⟨MB1

1 ↦→𝑒1, . . . ,MB𝑛
𝑛 ↦→𝑒𝑛⟩.

Case CF-Meta: Consider an application of the metavariable rule for MB𝑖

𝑖
with

B𝑖 = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b) and 𝑒𝑖 = {𝑥}𝑒:

⊢ 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢ b [�⃗�/𝑥]

⊢ ((b [�⃗�/𝑥])MB𝑖

𝑖
(�⃗�))

Because 𝐼∗((b [�⃗�/𝑥])MB𝑖

𝑖
(�⃗�)) = ((𝐼∗b) [𝐼∗�⃗�/𝑥]) 𝑒[𝐼∗�⃗�/𝑥] we need to derive

⊢ ((𝐼∗b) [𝐼∗�⃗�/𝑥]) 𝑒[𝐼∗�⃗�/𝑥] . (3.6)

Because 𝐼 is derivable, we know that ⊢ {𝑥:𝐼 (𝑖)∗ �⃗�} (𝐼 (𝑖)∗b) 𝑒 . By induction hypothesis
⊢ 𝐼 (𝑖)∗𝑡 𝑗 : (𝐼 (𝑖)∗𝐴 𝑗) [𝐼 (𝑖)∗�⃗� (𝑗)/𝑥 (𝑗)]) for each 𝑗 = 1, . . . , 𝑚, so by Lemma 3.2.2 we
derive ⊢ ((𝐼 (𝑖)∗b) 𝑒) [𝐼 (𝑖)∗�⃗�/𝑥], which coincides with (3.6).
Case CF-Meta-Congr-Ty: We consider the congruence rule for types only. Suppose
the derivation ends with an application of the congruence rule for MB𝑖

𝑖
with B𝑖 =

({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ type) and 𝑒𝑖 = {𝑥}𝐵:

for 𝑘 = 1, . . . , 𝑚:

⊢ 𝑠𝑘 : 𝐴[�⃗� (𝑘)/𝑥 (𝑘)]
⊢ 𝑡𝑘 : 𝐴[�⃗� (𝑘)/𝑥 (𝑘)]
⌊𝑡𝑘⌋ = ⌊𝑡 ′𝑘⌋
⊢ 𝑠𝑘 ≡ 𝑡 ′𝑘 : 𝐴[�⃗� (𝑘)/𝑥 (𝑘)] by 𝛼𝑘

𝛽 suitable

⊢ MB𝑖

𝑖
(�⃗�) ≡ MB𝑖

𝑖
(�⃗�) by 𝛽

Because 𝐼 is derivable, we know that ⊢ {𝑥:𝐼 (𝑖)∗ �⃗�} 𝐵 type, hence Lemma 3.2.6 applies.
Case CF-Abstr: Suppose the derivation ends with an abstraction

⊢ 𝐴 type a𝐴 ∉ fv(J) ⊢ J[a𝐴/𝑥]
⊢ {𝑥:𝐴} J

Without loss of generality we may assume that a𝐼∗𝐴 ∉ fv(𝐼∗J). (If not, rename a to a
fresh symbol.) We may apply the induction hypotheses to both premises and get

⊢ 𝐼∗𝐴 type and ⊢ (𝐼∗J) [a𝐼∗𝐴/𝑥] .

100 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

and derive the desired judgement ⊢ {𝑥:𝐼∗𝐴} 𝐼∗J by abstracting a𝐼∗𝐴 in the right-hand
judgement. □

3.2.2 Metatheorems about context-free finitary theories

The context-free economic rules for finitary theories carry over to the context-free
setting. The proofs are analogous to those of Section 2.2.2 so we omit them.

Proposition 3.2.9. [Economic version of Definition 3.1.7] Let 𝑅 be the context-free raw
ruleΞ =⇒ b 𝑒 withΞ = [MB1

1 , . . . ,M
B𝑛
𝑛] such that ⊢ b is derivable, in particular 𝑅 may

be finitary. Then for any instantiation 𝐼 = [MB1
1 ↦→𝑒1, . . . ,MB𝑛

𝑛 ↦→𝑒𝑛], the following
closure rule is admissible:

CF-Specific-Eco
⊢ (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛

⊢ 𝐼∗(b 𝑒)

Proposition 3.2.10 (Economic version of Definition 3.1.10). In a context-free raw
type theory, if B = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b, �⃗�, and �⃗� have well-typed annotations, then
the following closure rules are admissible:

CF-Meta-Eco
⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢ (b [�⃗�/𝑥])M(�⃗�)

CF-Meta-Congr-Eco
⊢ 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢ (b [�⃗�/𝑥])M𝑘 (�⃗�) ≡ M𝑘 (�⃗�)

3.2.3 Metatheorems about context-free standard theories

Inversion and uniqueness of typing (Theorems 2.2.22 and 2.2.24) carry over to context-
free finitary theories. First, the notion of natural type is simpler, as it does not depend
on the context anymore.

Definition 3.2.11. Let 𝑇 be a finitary type theory. The natural type 𝜏(𝑡) of a term
expression 𝑡 is defined by:

𝜏(a𝐴) = 𝐴,
𝜏(MB (𝑡1, . . . , 𝑡𝑚)) = 𝐴[𝑡1/𝑥1, . . . , 𝑡𝑚/𝑥𝑚]

where B = ({𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ : 𝐴)
𝜏(S(𝑒1, . . . , 𝑒𝑛)) = ⟨M1 ↦→𝑒1, . . . ,M𝑛 ↦→𝑒𝑛⟩∗𝐵

where the symbol rule for S is

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ □ : 𝐵

𝜏(κ(𝑡, 𝛼)) = 𝜏(𝑡)

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 101

Next, we define an operation which peels conversions off a term, and another one
that collects the peeled assumptions sets. We shall use these in the formulation of the
context-free inversion theorem.

Definition 3.2.12. The conversion-stripping s(𝑡) of a term expression 𝑡 is defined by:

s(𝑡) =
{︄
s(𝑡 ′) if 𝑡 = κ(𝑡 ′, 𝛼),
𝑡 otherwise.

The conversion-residue r(𝑡) is defined by

r(𝑡) =
{︄
𝛼 ∪ r(𝑡 ′) if 𝑡 = κ(𝑡 ′, 𝛼),
{| |} otherwise.

Note that ⌊𝑡⌋ = ⌊s(𝑡)⌋ and that asm(𝑡) = asm(s(𝑡), r(𝑡)).

Lemma 3.2.13. If a context-free standard type theory derives ⊢ 𝑡 : 𝐴 then

1. it derives ⊢ s(𝑡) : 𝜏(𝑡) by an application ofCF-Var,CF-Meta, or an instantiation
of a term symbol rule, and

2. it derives ⊢ 𝜏(𝑡) ≡ 𝐴 by r(𝑡).

Proof. We proceed by induction on the derivation of ⊢ 𝑡 : 𝐴.
Cases CF-Var, CF-Meta, and symbol rule : In these cases 𝑡 = s(𝑡) and 𝜏(𝑡) = 𝐴, so
we already have ⊢ s(𝑡) : 𝜏(𝑡), while ⊢ 𝜏(𝑡) ≡ 𝐴 by {| |} holds by reflexivity.
Case CF-Conv-Tm: Consider a derivation ending with a conversion

⊢ 𝑡 : 𝐵 ⊢ 𝐵 ≡ 𝐴 by 𝛽

⊢ κ(𝑡, 𝛼) : 𝐴

where asm(𝑡, 𝐵, 𝐴, 𝛽) = asm(𝑡, 𝐴, 𝛼). By induction hypothesis for the first premise
we obtain ⊢ s(𝑡) : 𝜏(𝑡) and ⊢ 𝜏(𝑡) ≡ 𝐵 by r(𝑡), derived by one of the desired rules.
Because s(𝑡) = s(κ(𝑡, 𝛼)) and 𝜏(𝑡) = 𝜏(κ(𝑡, 𝛼)), the first claim is established. For the
second one, we apply CF-EqTy-Trans like this:

⊢ 𝜏(𝑡) ≡ 𝐵 by r(𝑡) ⊢ 𝐵 ≡ 𝐴 by 𝛽

⊢ 𝜏(𝑡) ≡ 𝐴 by r(𝑡) ∪ 𝛼

Suitability of r(𝑡) ∪ 𝛼 is implied by asm(𝜏(𝑡), r(𝑡)) = asm(𝑡):

asm(𝜏(𝑡), 𝐵, r(𝑡), 𝐴, 𝛽) = asm(𝑡, 𝐵, 𝐴, 𝛽)
= asm(𝑡, 𝐴, 𝛼)
= asm(𝜏(𝑡), 𝐴, r(𝑡), 𝛼). □

Theorem 3.2.14 (Context-free inversion). If a context-free standard type theory
derives ⊢ 𝑡 : 𝐴, then:

102 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

• if 𝐴 = 𝜏(𝑡), it derives ⊢ s(𝑡) : 𝜏(𝑡) by a derivation which concludes with CF-Var,
CF-Meta, or an instantiation of a term symbol rule;

• if 𝐴 ≠ 𝜏(𝑡), it derives ⊢ κ(s(𝑡), r(𝑡)) : 𝐴 by CF-Conv-Tm.

Proof. Apply Lemma 3.2.13 and, depending on whether 𝐴 = 𝜏(𝑡), either use ⊢
s(𝑡) : 𝜏(𝑡) so obtained directly or convert it along ⊢ 𝜏(𝑡) ≡ 𝐴 by r(𝑡), observing
that the side condition asm(s(𝑡), 𝜏(𝑡), 𝐴, r(𝑡)) = asm(s(𝑡), r(𝑡), 𝐴) holds because
asm(𝜏(𝑡)) ⊆ asm(𝑡) = asm(s(𝑡), r(𝑡)). □

Theorem 3.2.15 (Context-free uniqueness of typing). For a context-free standard
type theory:

1. If ⊢ 𝑡 : 𝐴 and ⊢ 𝑡 : 𝐵, then ⊢ 𝐴 ≡ 𝐵 by 𝛼 for some assumption set 𝛼.

2. If ⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛽1 and ⊢ 𝑠 ≡ 𝑡 : 𝐵 by 𝛽2, with well-typed variables, then
⊢ 𝐴 ≡ 𝐵 by 𝛼 for some assumption set 𝛼.

In both cases, 𝛼 ⊆ asm(𝑡) can be computed from the judgements involved, without
recourse to their derivations.

Proof. The first statement holds because 𝐴 and 𝐵 are both judgmentally equal to the
natural type of 𝑡 by Lemma 3.2.13. The second statement reduces to the first one
because the presuppositions ⊢ 𝑡 : 𝐴 and ⊢ 𝑡 : 𝐵 are derivable by Theorem 3.2.5. □

3.2.4 Special metatheorems about context-free theories

We prove several metatheorems which are specific to context-free type theories. The
example of the equality reflection rule in the beginning of Section 3.1 showcased that
finitary type theories do not enjoy strengthening. Context-free type theories, however,
do satisfy this meta-property.

Theorem 3.2.16 (Strengthening). If a context-free raw type theory derives

⊢ {�⃗�:�⃗�}{𝑥:𝐴} J

and 𝑥 ∉ bv(J) then it also derives ⊢ {�⃗�:�⃗�} J.

Proof. We proceed by induction on the derivation of {�⃗�:�⃗�}{𝑥:𝐴} J. The only case to
consider is CF-Abstr. If the outer abstraction is empty, then the derivation ends with
the abstraction

⊢ 𝐴 type a𝐴 ∉ fv(J) ⊢ J[a𝐴/𝑥]
⊢ {𝑥:𝐴} J

(3.7)

Because 𝑥 ∉ bv(J), it follows that a𝐴 ∉ fv0(J[a𝐴/𝑥]) and that J[a𝐴/𝑥] = J, which
is the second premise, hence derivable. The other possibility is that the derivation
ends with

⊢ 𝐴 type c𝐶 ∉ fv({�⃗�:�⃗�}{𝑥:𝐴} J) ⊢ {�⃗�:�⃗�[c𝐶/𝑧]}{𝑥:𝐴[c𝐶/𝑧]} J[c𝐶/𝑧]
⊢ {𝑧:𝐶}{�⃗�:�⃗�}{𝑥:𝐴} J

3.2. METATHEOREMS ABOUT CONTEXT-FREE THEORIES 103

From 𝑥 ∉ bv(J) it follows that 𝑥 ∉ bv(J[c𝐶/𝑧]), hence we may apply the induction
hypothesis to the second premise and conclude by abstracting c𝐶 . □

Why cannot we adapt the above proof to type theories with contexts? In the
derivation (3.7), the second premise turns out to be precisely the desired conclusion,
whereas TT-Abstr would yield Θ;Γ, a:𝐴 ⊢ J where Θ;Γ ⊢ J is needed. Indeed,
strengthening is not generally valid for type theories with contexts.
The next lemma can be used to modify the head of a judgement so that it fits

another boundary, as long as there is agreement up to erasure.

Lemma 3.2.17 (Boundary conversion). In a context-free raw theory, if ⊢ B1, ⊢ B2,
⊢ B1 𝑒1 and ⌊B1⌋ = ⌊B2⌋ then there is 𝑒2 such that ⊢ B2 𝑒2 , asm(𝑒2) ⊆ asm(B1 𝑒1)
and ⌊𝑒1⌋ = ⌊𝑒2⌋.

Proof. We proceed by induction on the derivation of ⊢ B1.
Case CF-Bdry-Ty: If B1 = (□ type) then B2 = (□ type) and we may take 𝑒2 = 𝑒1.
Case CF-Bdry-Tm: If B1 = (□ : 𝐴1) then B2 = (□ : 𝐴2) and ⌊𝐴1⌋ = ⌊𝐴2⌋, therefore
⊢ 𝐴1 ≡ 𝐴2 by {| |} by CF-EqTy-Refl. We may take 𝑒2 = κ(𝑒1, asm(𝐴1) \ asm(𝐴2))
and derive ⊢ 𝑒2 : 𝐴2 by CF-Conv-Tm.
Case CF-Bdry-EqTy: If B1 = (𝐴1 ≡ 𝐵1 by □) then B2 = (𝐴2 ≡ 𝐵2 by □),
⌊𝐴1⌋ = ⌊𝐴2⌋ and ⌊𝐵1⌋ = ⌊𝐵2⌋. By CF-EqTy-Refl we obtain ⊢ 𝐴2 ≡ 𝐴1 by {| |} and
⊢ 𝐵1 ≡ 𝐵2 by {| |}. We take 𝑒2 = (𝑒1 ∪ asm(𝐴1) ∪ asm(𝐵1)) \ (asm(𝐴2) ∪ asm(𝐵2))
and derive ⊢ 𝐴2 ≡ 𝐵2 by 𝑒2 by two applications of CF-EqTy-Trans.
Case CF-Bdry-EqTm: If B1 = (𝑠1 ≡ 𝑡1 : 𝐴1 by □) then B2 = (𝑠2 ≡ 𝑡2 : 𝐴2 by □),
⌊𝑠1⌋ = ⌊𝑠2⌋, ⌊𝑡1⌋ = ⌊𝑡2⌋ and ⌊𝐴1⌋ = ⌊𝐴2⌋. By CF-EqTy-Refl we obtain ⊢ 𝐴1 ≡
𝐴2 by {| |}, then by CF-Conv-EqTm

⊢ κ(𝑠1, 𝛾) ≡ κ(𝑡1, 𝛿) : 𝐴2 by 𝑒1

where 𝛾 = asm(𝐴1)\asm(𝑠1, 𝐴2) and 𝛿 = asm(𝐴1)\asm(𝑡1, 𝐴2). Next, by reflexivity

⊢ 𝑠2 ≡ κ(𝑠1, 𝛾) : 𝐴2 by {| |}
⊢ κ(𝑡1, 𝛿) ≡ 𝑡2 : 𝐴2 by {| |}

We may chain these together by transitivity to derive

⊢ 𝑠2 ≡ 𝑡2 : 𝐴2 by 𝑒2

where 𝑒2 = asm(𝑒1, 𝑠1, 𝑡1, 𝐴1) \ asm(𝑠2, 𝑡2, 𝐴2).
Case CF-Bdry-Abstr: If B1 = ({𝑥:𝐴1} B′

1) then 𝑒1 = {𝑥}𝑒′1, B2 = {𝑥:𝐴2} B′
2,

⌊𝐴1⌋ = ⌊𝐴2⌋, and ⌊B′
1⌋ = ⌊B′

2⌋. There is a𝐴2 ∉ fv(B′
2) such that ⊢ B′

2 [a
𝐴2/𝑥]. We

may apply Lemma 3.2.2 to ⊢ {𝑥:𝐴1} B′
1 𝑒

′
1 and ⊢ κ(a

𝐴2 , {| |}) : 𝐴1 to derive

⊢ (B′
1 [κ(a

𝐴2 , {| |})/𝑥]) 𝑒′1 [κ(a
𝐴2 , {| |})/𝑥] .

104 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

By CF-Bdry-Subst we have ⊢ B′
1 [κ(a

𝐴2 , {| |})/𝑥], hence we may apply the induc-
tion hypothesis to obtain 𝑒′′2 such that ⌊𝑒

′′
2 ⌋ = ⌊𝑒′1 [κ(a

𝐴2 , {| |})/𝑥]⌋, asm(𝑒′′2) ⊆
asm(B′

1 [κ(a
𝐴2 , {| |})/𝑥]), and ⊢ (B′

2 [a
𝐴2/𝑥]) 𝑒′′2 . Set 𝑒

′
2 = 𝑒′′2 [𝑥/a𝐴2] and apply

CF-Bdry-Abstr to derive ⊢ {𝑥:𝐴2} B′
2 𝑒

′
2 . Thus we may take 𝑒2 = {𝑥}𝑒′2. □

3.3 A correspondence between theories with and without
contexts

We now establish a correpondence between finitary type theories with and without
contexts. We use the prefixes “tt“ (for “traditional types“) and “cf“ (for “context-free“)
to disambiguate between the two versions of type theory. Thus the raw tt-syntax is the
one from Fig. 2.1, and the raw cf-syntax the one from Fig. 3.1.
To ease the translation between the two versions of type theory, we shall use

annotated free variables a𝐴 and annotated metavariables MB in both version of raw
syntax, where the annotations 𝐴 and B are those of the cf-syntax. In the tt-syntax
these annotations are considered part of the symbol names, and do not carry any
type-theoretic significance.

3.3.1 Translation from cf-theories to tt-theories

We first show how to translate constituents of cf-theories to corresponding constituents
of tt-theories. The plan is simple enough: move the annotations to contexts, elide the
conversion terms, and replace the assumption sets with the dummy value.
The first step towards the translation was taken in Section 3.1.1.4, where we defined

the erasure operation taking a cf-expression 𝑒 to a tt-expression ⌊𝑒⌋ by removing
conversions and replacing assumptions sets with the dummy value. Note that erasure
and substitution commute, ⌊𝑒[𝑡/𝑥]⌋ = ⌊𝑒⌋ [⌊𝑡⌋/𝑥], by an induction on the syntactic
structure of 𝑒.
Next, in order to translate cf-judgements to tt-judgements, we need to specify

when a context correctly encodes the information provided by cf-annotations.

Definition 3.3.1. We say that Θ is a suitable metavariable context for a set of
cf-metavariables 𝑆 when 𝑆 ⊆ |Θ| and Θ(MB) = ⌊B⌋ for all MB ∈ 𝑆. Similarly, Γ
is a suitable variable context for a set of free cf-variables 𝑉 when 𝑉 ⊆ |Γ| and
Γ(a𝐴) = ⌊𝐴⌋ for all a𝐴 ∈ 𝑉 . We say that Θ;Γ is a suitable context for 𝑆 and 𝑉 when
Θ is suitable for 𝑆 an Γ for 𝑉 .

As a shorthand, we say that Θ;Γ is suitable for a syntactic entity 𝑒 when it is
suitable for mv(𝑒) and fv(𝑒). As suitability only depends on the assumption set, it
follows from suitability of Θ;Γ for 𝑒 and asm(𝑒′) ⊆ asm(𝑒) that Θ;Γ is also suitable
for 𝑒′.
Next, say that a free cf-variable a𝐴 depends on a free cf-variable b𝐵, written

b𝐵 ≺ a𝐴, when b𝐵 ∈ fv(𝐴), and that a set 𝑆 of free cf-variables is closed under
dependence when b𝐵 ≺ a𝐴 ∈ 𝑆 implies b𝐵 ∈ 𝑆. Every set 𝑆 of cf-variables is

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 105

contained in the least closed set, which is
⋃︁{|fv(a𝐴) | a𝐴 ∈ 𝑆 |}. We similarly define

dependence for cf-metavariables.
The following lemma shows how to construct suitable contexts.

Lemma 3.3.2. For every finite set of cf-metavariables 𝑆 there exists a suitable
metavariable context Θ, such that |Θ| is the closure of 𝑆 with respect to dependence.
For every finite set of free cf-variables 𝑉 there exists a suitable variable context Γ,
such that |Γ| is the closure of 𝑉 with respect to dependence.

Proof. Given a finite set of free cf-variables 𝑆, the well-founded order ≺ on⋃︁{|fv(a𝐴) |
a𝐴 ∈ 𝑆 |} may be extended to a total one, say a𝐴1

1 , . . . , a
𝐴𝑛
𝑛 . Now take Γ to be the

variable context a𝐴1
1 : ⌊𝐴1⌋, . . . , a𝐴𝑛

𝑛 : ⌊𝐴𝑛⌋. The argument for metavariables is
analogous. □

A totally ordered extension of ≺ can be given explicitly, so the preceding proof
yields an explicit construction of a suitable contexts. Notice that the construction does
not introduce any spurious assumptions, in the sense that for a variable context Γ
the constructed suitable set 𝑉 contains only the variables appearing in Γ and the
annotations of types appearing in Γ.

Proposition 3.3.3. If Θ;Γ is suitable for a cf-judgement J then Θ;Γ ⊢ ⌊J⌋ is a
syntactically valid tt-judgement, and similarly for boundaries.

Proof. A straightforward induction on the structrure of the judgement J. □

Next we translate rules, theories, and derivations.

Proposition 3.3.4. A cf-rule and a cf-rule-boundary

MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ j and MB1

1 , . . . ,M
B𝑛
𝑛 =⇒ b

respectively translate to the raw tt-rule and the tt-rule-boundary

MB1
1 :⌊B1⌋, . . . ,M

B𝑛
𝑛 :⌊B𝑛⌋ =⇒ ⌊j⌋

and
MB1
1 :⌊B1⌋, . . . ,M

B𝑛
𝑛 :⌊B𝑛⌋ =⇒ ⌊b⌋ .

A raw-cf theory 𝑇 = ⟨𝑅𝑖⟩𝑖∈𝐼 over a signature Σ is thus translated rule-wise to the raw
tt-theory 𝑇tt = ⟨(𝑅𝑖)tt⟩𝑖∈𝐼 over the same signature.

Proof. The conditions in Definition 3.1.1 guarantee that MB1
1 :⌊B1⌋, . . . ,M

B𝑛
𝑛 :⌊B𝑛⌋ is

a metavariable context and that it is suitable for ⌊j⌋ and ⌊b⌋. □

Theorem 3.3.5 (Translation from finitary cf- to tt-theories).

1. The translation of a finitary cf-theory is finitary.

106 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

2. Suppose 𝑇 is a finitary cf-theory whose translation 𝑇tt is also finitary. Let Θ;Γ
be tt-context such that ⊢𝑇tt Θ mctx and Θ ⊢𝑇tt Γ vctx. If ⊢𝑇 J and Θ;Γ is suitable
for J, then Θ;Γ ⊢𝑇tt ⌊J⌋.

3. With 𝑇 , Θ;Γ as in (2), if ⊢𝑇 B and Θ;Γ is suitable for B then Θ;Γ ⊢𝑇tt ⌊B⌋.

Proof. We proceed by mutual structural induction on all three statements.
To prove statement (1), consider a finitary cf-theory 𝑇 = (𝑅𝑖)𝑖∈𝐼 , and let (𝐼, ≺) be

a well-founded order witnessing the finitary character of 𝑇 (Definition 3.1.13). We
prove that 𝑇tt is finitary with respect to (𝐼, ≺) by a well-founded induction on the order.
Given any 𝑖 ∈ 𝐼, with

𝑅𝑖 = (MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ j),

let Θ = [MB1
1 :⌊B1⌋, . . . ,M

B𝑛
𝑛 :⌊B𝑛⌋]. We verifty that (𝑅𝑖)tt = (Θ =⇒ ⌊j⌋) is finitary

in 𝑇 ′ = ((𝑅 𝑗) 𝑗≺𝑖)tt as follows:

• ⊢𝑇 ′ Θ mctx holds by induction on 𝑘 = 1, . . . , 𝑛: assuming ⊢𝑇 ′ Θ(𝑘) mctx has
been established, apply (2) to a cf-derivation of ⊢(𝑅𝑖) 𝑗≺𝑖 B𝑘 and the suitable
context Θ(𝑘) ; [].

• ⊢𝑇 ′ ⌊j⌋ holds by application of (2) to a cf-derivation of ⊢(𝑅𝑖) 𝑗≺𝑖 j and the
suitable context Θ; [].

We next address statement (2), which we prove by structural induction on the
derivation of ⊢𝑇 J.
Case CF-Var: A cf-derivation ending with the variable rule

⊢𝑇 a𝐴 : 𝐴

is translated to an application of TT-Var

a𝐴 ∈ |Γ|
Θ;Γ ⊢𝑇tt a𝐴 : ⌊𝐴⌋

By suitability of Γ the side-condition a𝐴 ∈ |Γ| is satisfied, and Γ(a𝐴) = ⌊𝐴⌋.
Case CF-Meta: Consider a cf-derivation ending in

⊢𝑇 𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)] for 𝑖 = 1, . . . , 𝑛

⊢𝑇 b [�⃗�/𝑥]

⊢ (b [�⃗�/𝑥])MB (�⃗�)

Because erasure commutes with substitution we have

⌊𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]⌋ = ⌊𝐴𝑖⌋ [⌊�⃗� (𝑖)⌋/𝑥 (𝑖)],
⌊b [�⃗�/𝑥]⌋ = ⌊b⌋ [⌊�⃗�⌋/𝑥],

⌊(bM{ �⃗�:�⃗�}b (𝑥)) [�⃗�/𝑥]⌋ = (⌊b⌋ ⌊M{ �⃗�:�⃗�}b (𝑥)⌋) [⌊�⃗�⌋/𝑥] .

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 107

Applying TT-Meta to the translation of the premises obtained by the induction
hypothesis thus yields the desired result. Suitability of Θ;Γ is ensured because all
premises are recorded in the conclusion.
Cases CF-Meta-Congr-Ty and CF-Meta-Congr-Tm: We spell out the translation of
the latter rule, where B = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} □ : 𝐵:

⊢ 𝑠𝑘 : 𝐴𝑘 [�⃗� (𝑘)/𝑥 (𝑘)] for 𝑘 = 1, . . . , 𝑚

⊢ 𝑡𝑘 : 𝐴𝑘 [�⃗� (𝑘)/𝑥 (𝑘)] for 𝑘 = 1, . . . , 𝑚

⌊𝑡𝑘⌋ = ⌊𝑡 ′𝑘⌋ for 𝑘 = 1, . . . , 𝑚

⊢ 𝑠𝑘 ≡ 𝑡 ′𝑘 : 𝐴[�⃗� (𝑘)/𝑥 (𝑘)] by 𝛼𝑘 for 𝑘 = 1, . . . , 𝑚
⊢ 𝑣 : 𝐵[�⃗�/𝑥] ⌊MB (�⃗�)⌋ = ⌊𝑣⌋ 𝛽 suitable

⊢ MB (�⃗�) ≡ 𝑣 : 𝐵[�⃗�/𝑥] by 𝛽
(3.8)

The context Θ;Γ is suitable for the premises because 𝛽 is suitable. We apply
TT-Meta-Congr as follows:

Θ;Γ ⊢ ⌊𝑠𝑘⌋ : ⌊𝐴𝑘⌋ [⌊�⃗�⌋ (𝑘)/𝑥 (𝑘)] for 𝑘 = 1, . . . , 𝑚

Θ;Γ ⊢ ⌊𝑡𝑘⌋ : ⌊𝐴𝑘⌋ [⌊�⃗�⌋ (𝑘)/𝑥 (𝑘)] for 𝑘 = 1, . . . , 𝑚

Θ;Γ ⊢ ⌊𝑠𝑘⌋ ≡ ⌊𝑡𝑘⌋ : ⌊𝐴𝑘⌋ [⌊�⃗�⌋ (𝑘)/𝑥 (𝑘)] for 𝑘 = 1, . . . , 𝑚

Θ;Γ ⊢ ⌊𝐵⌋ [⌊�⃗�⌋/𝑥] ≡ ⌊𝐵⌋ [⌊�⃗�⌋/𝑥]
Θ;Γ ⊢ MB

𝑘 (⌊�⃗�⌋) ≡ MB
𝑘 (⌊�⃗�⌋) : ⌊𝐵⌋ [⌊�⃗�⌋/𝑥]

The first two rows of premises are secured by the induction hypotheses for the
corresponding rows in (3.8), and the premises in the third row are derivable by the
side conditions in the third row and induction hypotheses for the fourth row. The last
premise follows by Theorem 2.2.8 applied to Θ;Γ ⊢𝑇tt ⌊𝐵⌋ type, which holds because
we assumed ⊢𝑇tt Θ mctx.
Case CF-Abstr: A cf-derivation ending with an abstraction

⊢𝑇 𝐴 type a𝐴 ∉ fv(J) ⊢𝑇 J[a𝐴/𝑥]
⊢𝑇 {𝑥:𝐴} J

is translated to a tt-derivation ending with TT-Abstr

Θ;Γ ⊢𝑇tt ⌊𝐴⌋ type b𝐴 ∉ |Γ| Θ;Γ, b𝐴:⌊𝐴⌋ ⊢𝑇tt ⌊J⌋ [b𝐴/𝑥]
Θ;Γ ⊢𝑇tt {𝑥:⌊𝐴⌋} ⌊J⌋

The premises get their derivations from induction hypotheses, where b𝐴 ∉ |Γ| ensures
that Γ, b𝐴:⌊𝐴⌋ is suitable for J[b𝐴/𝑥].
Case of a specific rule: Consider a derivation ending with an instantiation 𝐼 =

⟨MB1
1 ↦→𝑒1, . . . ,MB𝑛

𝑛 ↦→𝑒𝑛⟩ of a raw cf-rule 𝑅 = (MB1
1 , . . . ,M

B𝑛

𝑛 =⇒ b 𝑒):

⊢𝑇 (𝐼 (𝑖)∗B𝑖) 𝑒𝑖 for i = 1, . . . , n

⊢𝑇 𝐼∗b

⊢𝑇 𝐼∗(b 𝑒)

108 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Let ⌊𝐼⌋ = MB1
1 ↦→⌊𝑒1⌋, . . . ,MB𝑛

𝑛 ↦→⌊𝑒𝑛⌋. Because erasure commutes with instantiation
we have

⌊(𝐼 (𝑖)∗B𝑖) 𝑒𝑖 ⌋ = (⌊𝐼⌋ (𝑖)∗⌊B𝑖⌋) ⌊𝑒𝑖⌋

and ⌊𝐼∗(b 𝑒)⌋ = ⌊𝐼⌋∗⌊b 𝑒 ⌋. Thus we may appeal to the induction hypotheses for
the premises and conclude by 𝑅tt, so long as we remember to check that Θ;Γ is
suitable for the premises, which it is because Definition 3.1.1 of raw cf-rules requires
mv(b 𝑒) = {|MB1

1 , . . . ,M
B𝑛

𝑛 |}.
Case of a congruence rule: Consider an application of the congruence rule associated
with a cf-rule

𝑅 = (MB1
1 , . . . ,M

B𝑛
𝑛 =⇒ 𝑡 : 𝐴),

as in Definition 3.1.8:

⊢𝑇 (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 for 𝑖 = 1, . . . , 𝑛

⊢𝑇 (𝐽(𝑖)∗B𝑖) 𝑔𝑖 for 𝑖 = 1, . . . , 𝑛

⌊𝑔′𝑖⌋ = ⌊𝑔𝑖⌋ for object boundary B𝑖

⊢𝑇 (𝐼 (𝑖)∗B𝑖) 𝑓𝑖 ≡ 𝑔′𝑖 by 𝛼𝑖 for object boundary B𝑖

⊢𝑇 𝑡 ′ : 𝐼∗𝐴 ⌊𝑡 ′⌋ = ⌊𝐽∗𝑡⌋
𝛽 suitable

⊢𝑇 𝐼∗𝑡 ≡ 𝑡 ′ : 𝐼∗𝐴 by 𝛽
(3.9)

The context Θ;Γ is suitable for the premises because 𝛽 is suitable. We apply the
corresponding congruence for 𝑅tt (Definition 2.1.13):

Θ;Γ ⊢𝑇tt (⌊𝐼⌋ (𝑖)∗⌊B𝑖⌋) ⌊ 𝑓𝑖⌋ for 𝑖 = 1, . . . , 𝑛

Θ;Γ ⊢𝑇tt (⌊𝐽⌋ (𝑖)∗⌊B𝑖⌋) ⌊𝑔𝑖⌋ for 𝑖 = 1, . . . , 𝑛

Θ;Γ ⊢𝑇tt (⌊𝐼⌋ (𝑖)∗⌊B𝑖⌋) ⌊ 𝑓𝑖⌋ ≡ ⌊𝑔𝑖⌋ for object boundary B𝑖

Θ;Γ ⊢𝑇tt ⌊𝐼⌋∗⌊𝐴⌋ ≡ ⌊𝐽⌋∗⌊𝐴⌋
Θ;Γ ⊢𝑇tt ⌊𝐼⌋∗⌊𝑡⌋ ≡ ⌊𝐽⌋∗⌊𝑡⌋ : ⌊𝐼⌋∗⌊𝐴⌋

The first and the second row of premises are derivable by induction hypotheses for
the corresponding rows in (3.9), while the third row is derivable because of the side
conditions on the third row and induction hypotheses for the fourth row. The last
premise follows by Theorem 2.2.17 applied to Θ;Γ ⊢𝑇tt 𝐴 type, which in turn follows
by induction hypothesis applied to a derivation of ⊢𝑇 𝐴 type witnessing the finitary
character of 𝑅.
Case CF-Conv-Tm: Consider a term conversion

⊢𝑇 𝑡 : 𝐴 ⊢𝑇 𝐴 ≡ 𝐵 by 𝛼

⊢𝑇 κ(𝑡, 𝛽) : 𝐵

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 109

The side condition asm(𝑡, 𝐴, 𝐵, 𝛼) = asm(𝑡, 𝐵, 𝛽) ensures that Θ;Γ is suitable for
both premises, hence we may apply the induction hypotheses to the premisess and
conclude by TT-Conv-Tm.
Case CF-Conv-EqTm: Consider an equality conversion

⊢ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 ⊢ 𝐴 ≡ 𝐵 by 𝛽

⊢ κ(𝑠, 𝛾) ≡ κ(𝑡, 𝛿) : 𝐵 by 𝛼

The side conditions

asm(𝑠, 𝐴, 𝐵, 𝛽) = asm(𝑠, 𝐵, 𝛾) and asm(𝑡, 𝐴, 𝐵, 𝛽) = asm(𝑡, 𝐵, 𝛿)

ensure that Θ;Γ is suitable for both premises, hence we may apply the induction
hypotheses to the premises and conclude by TT-Conv-EqTm. As in the preceding
case all assumptions in the premises already appear in the conclusion, and suitability
is preserved.
Cases CF-EqTy-Refl, CF-EqTy-Sym, CF-EqTy-Trans, CF-EqTm-Refl, CF-EqTm-
Sym, CF-EqTm-Trans: These all proceed by application of induction hypotheses
to the premises, followed by the corresponding tt-rule, where crucially we rely on
recording metavariables in the assumption sets to make sure that Θ and Γ are suitable
for the premises.

Finally, we address statement (2), which is proved by structural induction on ⊢𝑇 B.
The base cases CF-Bdry-Ty, CF-Bdry-Tm, CF-Bdry-EqTy, CF-Bdry-EqTm reduce
to translation of term and type judgements, while the induction step CF-Bdry-Abstr
is similar to the case CF-Abstr above. □

With the theorem in hand, the loose ends are easily tied up.

Corollary 3.3.6. The translation of a standard cf-theory is a standard tt-theory.

Proof. The translation takes symbol rules to symbol rules, and equality rules to
equality rules. □

Corollary 3.3.7. If a finitary cf-theory𝑇 derives ⊢𝑇 J andJ has well-typed annotations
then there exists a context Θ;Γ which is suitable for J such that ⊢𝑇tt Θ mctx and
Θ ⊢𝑇tt Γ vctx.

Proof. We may use the suitable context Θ;Γ with Θ and Γ constructed respectively
from mv(J) and fv(J) as in Lemma 3.3.2. □

3.3.2 Translation from tt-theories to cf-theories

Transformation from tt-theories to cf-theories requires annotation of variables with
typing information, insertion of conversions, and reconstruction of assumption sets.
Unlike in the previous section, we cannot directly translate judgements, but must
look at derivations in order to tell where conversions should be inserted and what

110 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

assumption sets used. We begin by defining auxiliary notions that help organize the
translation.
Given a cf-expression 𝑒, let ⌊⌊𝑒⌋⌋ be the double erasure of 𝑒, which is like erasure

⌊𝑒⌋, except that we also remove annotations: ⌊⌊MB⌋⌋ = M and ⌊⌊a𝐴⌋⌋ = a. The following
definition specifies when an assignment of annotations to variables, which we call a
labeling, meets the syntactic criteria that makes it eligible for a translation.

Definition 3.3.8.

1. Consider a metavariable context

Θ = [M1:B1, . . . ,M𝑚:B𝑚] .

An eligible labeling for Θ is a map

𝜃 = ⟨M1 ↦→B′
1, . . . ,M𝑚 ↦→B′

𝑚⟩

which assigns to each M𝑖 a cf-boundary B′
𝑖
such that ⌊⌊B′

𝑖
⌋⌋ = B𝑖, and if

MB
𝑗
∈ mv(B′

𝑖
) then B = B′

𝑗
.

2. With Θ and 𝜃 as above, consider a variable context

Γ = [a1:𝐴1, . . . , a𝑛:𝐴𝑛],

over Θ. An eligible labeling for Γ with respect to 𝜃 is a map

𝛾 = ⟨a1 ↦→𝐴′
1, . . . , a𝑛 ↦→𝐴′

𝑛⟩

which assigns to each a𝑖 a cf-type 𝐴′
𝑖
such that ⌊⌊𝐴′

𝑖
⌋⌋ = 𝐴𝑖 , if MB

𝑗
∈ mv(𝐴𝑖) then

B = 𝜃 (M 𝑗), and if a𝐴
𝑘
∈ fv(𝐴𝑖) then 𝐴 = 𝛾(a𝑘).

3. A (𝜃, 𝛾) is an eligible labeling for (Γ;Θ) when 𝜃 is eligible for Θ and 𝛾 is
eligible for Γ with respect to 𝜃.

4. With (𝜃, 𝛾) eligible for Θ;Γ, an eligible cf-judgement J′ for a tt-judgement J
over Θ;Γ is one that satisfies ⌊⌊J′⌋⌋ = J, if MB

𝑖
∈ mv(J′) then B = 𝜃 (M𝑖), and

if a𝐴
𝑘
∈ fv(J′) then 𝐴 = 𝛾(a𝑘).

5. With (𝜃, 𝛾) eligible for Θ;Γ, an eligible cf-boundary B′ for a tt-boundary B
over Θ;Γ is one that satisfies ⌊⌊B′⌋⌋ = B, if MB′′

𝑖
∈ mv(B′) then B′′ = 𝜃 (M𝑖),

and if a𝐴
𝑘
∈ fv(B′) then 𝐴 = 𝛾(a𝑘).

We also postulate eligibility requirements for raw rules and theories.

Definition 3.3.9. Consider a raw tt-rule

𝑅 = (M1:B1, . . . ,M𝑛:B𝑛 =⇒ j).

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 111

An eligible raw cf-rule for 𝑅 is a raw cf-rule

𝑅′ = (MB′
1
1 , . . . ,M

B′
𝑛

𝑛 =⇒ j′)

such that 𝜃 = ⟨M1 ↦→B′
1, . . . ,M𝑛 ↦→B′

𝑛⟩ is eligible for [M1:B1, . . . ,M𝑛:B𝑛], and j′ is
eligible for j with respect to 𝜃 (and the empty labeling for []).
Let 𝑇 = ⟨𝑅𝑖⟩𝑖∈𝐼 be a raw tt-theory over Σ. An eligible raw cf-theory for 𝑇 is a raw

cf-theory 𝑇 ′ = ⟨𝑅′
𝑖
⟩𝑖∈𝐼 over Σ such that each 𝑅′

𝑖
is eligible for 𝑅𝑖 .

Theorem 3.3.10 (Translation of standard tt- to cf-theories).

1. For any standard tt-theory 𝑇 there exists a standard cf-theory 𝑇 ′ eligible for 𝑇 .

2. For any 𝑇 , 𝑇 ′ as above, if ⊢𝑇 Θ mctx then there exists an eligible labeling 𝜃 for
Θ such that ⊢𝑇 ′ 𝜃 (M) for every M ∈ |Θ|.

3. For any 𝑇 , 𝑇 ′, Θ, 𝜃 as above, if Θ; [] ⊢𝑇 Γ vctx then there exists an eligible
labeling 𝛾 for Γ with respect to 𝜃 such that ⊢𝑇 ′ 𝛾(a) type for every a ∈ |Γ|.

4. For any 𝑇 , 𝑇 ′, Θ, 𝜃, Γ, 𝛾 as above, if Θ;Γ ⊢𝑇 B then there exists an eligible
cf-boundary B′ for B with respect to 𝜃, 𝛾 such that ⊢𝑇 ′ B′.

5. For any 𝑇 , 𝑇 ′, Θ, 𝜃, Γ, 𝛾, as above, if Θ;Γ ⊢𝑇 J then there exists an eligible
cf-judgement J′ for J with respect to 𝜃, 𝛾 such that ⊢𝑇 ′ J′.

Proof. We prove the above existence statements by explicit constructions, e.g., we
prove (1)) by constructing a specific 𝑇 ′ which meets the criteria, and similarly for the
remaining parts. We proceed by simultaneous structural induction on all the parts.

Proof of part (1): We proceed by induction on a well-founded order (𝐼, ≺) witnessing
the finitary character of 𝑇 = (𝑅𝑖)𝑖∈𝐼 . Consider any 𝑖 ∈ 𝐼, with the corresponding
specific rule

𝑅𝑖 = (Θ =⇒ b 𝑒),

and let 𝑇𝑖 = (𝑅 𝑗) 𝑗≺𝑖. By induction hypothesis the tt-theory 𝑇 ′
𝑖
eligible for 𝑇𝑖

has been constructred. Because ⊢𝑇𝑖 Θ mctx, by (2) there is an eligible labeling
𝜃 = ⟨M1 ↦→B′

1, . . . ,M𝑛 ↦→B′
𝑛⟩ for Θ such that ⊢𝑇 ′

𝑘
B′

𝑘
for each 𝑘 = 1, . . . , 𝑛. The empty

map 𝛾 = ⟨⟩ is an eligible labeling for the empty context []. Because Θ; [] ⊢𝑇𝑖 b,
by (4) there is an eligible cf-boundary b′ for b with respect to 𝜃, 𝛾 such that ⊢𝑇 ′

𝑖
b′.

We now are in possession of the cf-rule-boundary

MB′
1
1 , . . . ,M

B′
𝑛

𝑛 =⇒ b′ (3.10)

eligible for the tt-rule-boundary Θ =⇒ b. Let

𝑅′
𝑖 = (MB′

1
1 , . . . ,M

B′
𝑛

𝑛 =⇒ b′ 𝑒′)

be the symbol or equality cf-rule induced by (3.10), as in Definitions 3.1.5 and 3.1.6.
Comparison with Definitions 2.1.10 and 2.1.12 shows that ⌊⌊𝑒′⌋⌋ = 𝑒, as required.

112 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

Proof of part (2): We proceed by induction on the derivation of ⊢𝑇 Θ mctx. The empty
map is an eligible labeling for the empty metavariable context. If ⊢𝑇 ⟨Θ,M:B⟩ mctx
then by inversion ⊢𝑇 Θ mctx and Θ; [] ⊢𝑇 B. By induction hypothesis there exists
an eligible labeling 𝜃 for Θ, and by (4) applied to 𝑇 , 𝑇 ′, Θ, 𝜃, [], ⟨⟩ a cf-boundary
B′ eligible for B such that ⊢𝑇 ′ B′. The map 𝜃 ′ = ⟨𝜃,M ↦→B′⟩ is eligible for ⟨Θ,M:B⟩,
and moreover ⊢𝑇 ′ 𝜃 ′(M′) for every M′ ∈ |𝜃 ′ |.

Proof of part (3) is analogous to part (2).

Proof of part (4): The non-abstracted boundaries reduce to instances of (5) by
inversion, while the case of TT-Bdry-Abstr is analogous to the case TT-Abstr below.

Part (5): Let 𝑇 , 𝑇 ′, Θ, 𝜃, Γ, 𝛾 be as in (5) with

Θ = [M1:B1, . . . ,M𝑚:B𝑝],
𝜃 = ⟨M1 ↦→B′

1, . . . ,M𝑝 ↦→B′
𝑝⟩,

Γ = [a1:𝐴1, . . . , a𝑝:𝐴𝑟],
𝛾 = ⟨a1 ↦→𝐴′

1, . . . , a𝑟 ↦→𝐴′
𝑟 ⟩.

We have the further assumption that each M𝑖 has a cf-derivation 𝐷M𝑖
of ⊢𝑇 ′ B′

𝑖
, and

each a 𝑗 a cf-derivation 𝐷a 𝑗
of ⊢𝑇 ′ 𝐴′

𝑗
type. We proceed by structural induction on the

derivation of Θ;Γ ⊢𝑇 J. In each case we construct a cf-derivation concluding with
⊢𝑇 ′ J′ such that J′ is eligible for J.
Case TT-Var: Consider a tt-derivation ending with the variable rule

Θ;Γ ⊢𝑇 a 𝑗 : 𝐴 𝑗

The corresponding cf-derivation is the application of CF-Var

⊢𝑇 ′ a
𝐴′

𝑗

𝑗
: 𝐴′

𝑗

Case TT-Meta: Consider a tt-derivation ending with the metavariable rule, where
B𝑘 = {𝑥1:𝐵1} · · · {𝑥𝑚:𝐵𝑚} b and B′

𝑘
= {𝑥1:𝐵′

1} · · · {𝑥𝑚:𝐵
′
𝑚} b′:

Θ;Γ ⊢𝑇 𝑡 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 b [�⃗�/𝑥]
Θ;Γ ⊢𝑇 (b [�⃗�/𝑥])M𝑘 (�⃗�)

The correspond cf-derivation ends with and application of CF-Meta,

⊢𝑇 ′ 𝑡 ′𝑗 : 𝐵
′
𝑗 [�⃗�

′
(𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢𝑇 ′ b′[�⃗� ′/𝑥]

⊢𝑇 ′ b′ MB′ (�⃗� ′)

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 113

where the cf-terms �⃗� ′ = (𝑡 ′1, . . . , 𝑡
′
𝑚) are constructed inductively as follows. Assuming

we already have �⃗� ′(𝑗) , we apply the induction hypothesis to the 𝑗-th premise and obtain
its eligible counterpart ⊢𝑇 ′ 𝑡 ′′

𝑗
: 𝐵′′

𝑗
, so that ⌊⌊𝑡 ′′

𝑗
⌋⌋ = 𝑡 𝑗 and ⌊⌊𝐵′′

𝑗
⌋⌋ = 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)]. It

follows that ⌊𝐵′′
𝑗
⌋ = ⌊𝐵′

𝑗
[�⃗� ′(𝑗)/𝑥 (𝑗)]⌋, therefore we may use Lemma 3.2.17 to modify

𝑡 ′′
𝑗
to a term 𝑡 ′

𝑗
which fills 𝐵′

𝑗
[�⃗� ′(𝑗)/𝑥 (𝑗)].

Case TT-Meta-Congr: We consider a tt-derivation ending with a metavariable term
congruence rule, where

B𝑘 = {𝑥1 :𝐵1} · · · {𝑥𝑚 :𝐵𝑚} □ : 𝐶 and B′
𝑘 = {𝑥1 :𝐵′

1} · · · {𝑥𝑚 :𝐵
′
𝑚} □ : 𝐶 ′

Θ;Γ ⊢𝑇 𝑠 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 𝑡 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 𝑠 𝑗 ≡ 𝑡 𝑗 : 𝐵 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 𝐶 [�⃗�/𝑥] ≡ 𝐶 [�⃗�/𝑥]
Θ;Γ ⊢𝑇 M𝑘 (�⃗�) ≡ M𝑘 (�⃗�) : 𝐶 [�⃗�/𝑥]

(3.11)

The corresponding cf-derivation ends with CF-Meta-Congr-Tm

⊢𝑇 ′ 𝑠′𝑗 : 𝐵
′
𝑗 [�⃗�

′
(𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⊢𝑇 ′ 𝑡 ′𝑗 : 𝐵
′
𝑗 [�⃗�

′
(𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

⌊𝑡 ′𝑘⌋ = ⌊𝑡 ′′𝑗 ⌋ for 𝑗 = 1, . . . , 𝑚

⊢𝑇 ′ 𝑠′𝑗 ≡ 𝑡 ′′𝑗 : 𝐵′
𝑗 [�⃗�

′
(𝑗)/𝑥 (𝑗)] by 𝛼 𝑗 for 𝑗 = 1, . . . , 𝑚

⊢𝑇 ′ 𝑣 : 𝐶 ′[�⃗�′/𝑥] ⌊MB (�⃗� ′)⌋ = ⌊𝑣⌋

⊢𝑇 ′ MB (�⃗�′) ≡ 𝑣 : 𝐶 ′[𝑠 ′⃗/𝑥] by 𝛽
(3.12)

where suitable �⃗�′, �⃗� ′, �⃗� ′′, �⃗�, 𝑣, and 𝛽 remain to be constructed. The terms �⃗�′ and �⃗� ′ are
obtained as in the previous case, using the first two rows of premises of (3.11). The
induction hypotheses for the third row give us judgements, for 𝑗 = 1, . . . , 𝑚,

⊢𝑇 ′ 𝑠′′𝑗 ≡ 𝑡 ′′𝑗 : 𝐵′′
𝑗

such that ⌊𝐵′′
𝑗
⌋ = ⌊𝐵 𝑗 [�⃗�′(𝑗)/𝑥 (𝑗)]⌋. We convert the above equality along ⊢𝑇 ′ 𝐵′′

𝑗
≡

𝐵 𝑗 [�⃗�′(𝑗)/𝑥 (𝑗)] to derive
⊢𝑇 ′ 𝑠′′′𝑗 ≡ 𝑡 ′𝑗 : 𝐵 𝑗 [�⃗�′(𝑗)/𝑥 (𝑗)]

and since ⌊𝑠′′′
𝑗
⌋ = ⌊𝑠′

𝑗
⌋ by reflexivity and transitivity

⊢𝑇 ′ 𝑠′𝑗 ≡ 𝑡 ′𝑗 : 𝐵 𝑗 [�⃗�′(𝑗)/𝑥 (𝑗)] .

It remains to construct 𝑣 and 𝛽. For the former, we apply CF-Subst-EqTy to
⊢𝑇 ′ {𝑥 : �⃗�′} 𝐶 ′ type to derive

⊢𝑇 ′ 𝐶 ′[�⃗�′/𝑥] ≡ 𝐶 ′[�⃗� ′/𝑥] by 𝛿

114 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

ands use it to convert ⊢𝑇 ′ M𝑘 (�⃗�
′) : 𝐶 ′[�⃗� ′/𝑥] to ⊢𝑇 ′ κ(M𝑘 (�⃗�

′), 𝜖) : 𝐶 ′[�⃗�′/𝑥] for a
suitable 𝜖 . We take 𝑣 = κ(M𝑘 (�⃗�

′), 𝜖) and the minimal suitable 𝛽.
Case TT-Abstr: Consider a tt-derivation ending with an abstraction

Θ;Γ ⊢𝑇 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ⊢𝑇 J[a/𝑥]
Θ;Γ ⊢𝑇 {𝑥:𝐴} J

By induction hypothesis we obtain a derivation of ⊢𝑇 ′ 𝐴′ type which is eligible for the
first premise. The extended map ⟨𝛾, a ↦→𝐴′⟩ is eligible for Γ, a:𝐴, and so by induction
hypothesis we obtain a derivble ⊢𝑇 ′ J′ which is eligible for the second premise with
respect to (𝜃, ⟨𝛾, a ↦→𝐴′⟩). We form the desired abstraction by CF-Abstr,

⊢𝑇 ′ 𝐴′ type a𝐴′
∉ fv(J′) ⊢𝑇 ′ J′

⊢𝑇 ′ {𝑥:𝐴′} J′[𝑥/a𝐴′]

Case of a specific rule: Consider a specific tt-rule

𝑅 = (N1:D1, . . . ,N𝑚:D𝑚 =⇒ j),

and the corresponding cf-rule

𝑅′ = (N1D
′
1 , . . . ,N𝑘

D′
𝑚 =⇒ j′)

Consider a tt-derivation ending with 𝐼∗𝑅 where 𝐼 = ⟨N1 ↦→𝑒1, . . . ,N𝑚 → 𝑒𝑚⟩:

Θ;Γ ⊢𝑇 (𝐼 (𝑗)∗D 𝑗) 𝑒 𝑗 for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 𝐼∗b

Θ;Γ ⊢𝑇 𝐼∗(b 𝑒)
(3.13)

The corresponding cf-derivation is obtained by an application of 𝑅′ instantiated with

𝐼 ′ = ⟨N1D
′
1 ↦→𝑒′1, . . . ,N𝑘

D′
𝑘 ↦→𝑒′𝑚⟩,

which is constructed inductively as follows. Suppose 𝑒 ′⃗ (𝑗) have already been construc-
ted in such a way that ⌊⌊𝑒′

𝑘
⌋⌋ = 𝑒𝑘 and ⊢𝑇 ′ (𝐼 ′(𝑘)∗D

′
𝑘
) 𝑒′

𝑘
for all 𝑘 < 𝑗 . The induction

hypothesis for the 𝑗-th premise of (3.13) yields ⊢𝑇 ′ D ′′
𝑗
𝑒′′
𝑗
such that ⌊D ′′

𝑗
⌋ = ⌊𝐼 ′(𝑗)D

′
𝑗
⌋.

We apply Lemma 3.2.17 to modify 𝑒′′
𝑗
to 𝑒′

𝑗
such that ⊢𝑇 ′ (𝐼 ′(𝑗)D

′
𝑗
) 𝑒′

𝑗
and ⌊⌊𝑒′

𝑗
⌋⌋ = ⌊𝑒′′

𝑗
⌋.

Lastly, the premise ⊢𝑇 ′ 𝐼 ′∗b
′ is derivable because 𝑅′ is finitary.

Case of a congruence rule: Consider a term tt-rule

𝑅 = (N1:D1, . . . ,N𝑚:D𝑚 =⇒ 𝑡 : 𝐶),

and the corresponding cf-rule

𝑅′ = (ND′
1
1 , . . . ,N

D′
𝑚

𝑚 =⇒ 𝑡 ′ : 𝐶 ′),

3.3. A CORRESPONDENCE BETWEEN TT AND CF THEORIES 115

Given instantiations

𝐼 = ⟨N1 ↦→ 𝑓1, . . . ,N𝑚 → 𝑓𝑚⟩ and 𝐽 = ⟨N1 ↦→𝑔1, . . . ,N𝑚 → 𝑔𝑚⟩,

suppose the tt-derivation ends with the congruence rule for 𝑅:

Θ;Γ ⊢𝑇 (𝐼 (𝑗)∗D 𝑗) 𝑓 𝑗 for 𝑖 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 (𝐽(𝑗)∗D 𝑗) 𝑔 𝑗 for 𝑖 = 1, . . . , 𝑚

Θ;Γ ⊢𝑇 (𝐼 (𝑗)∗D 𝑗) 𝑓 𝑗 ≡ 𝑔𝑖 for object boundary D 𝑗

Θ;Γ ⊢𝑇 𝐼∗𝐶 ≡ 𝐽∗𝐶
Θ;Γ ⊢ 𝐼∗𝑡 ≡ 𝐽∗𝑡 : 𝐼∗𝐶

(3.14)

The corresponding cf-derivation ends with the congruence rule for 𝑅′,

⊢𝑇 ′ (𝐼 ′(𝑖)∗D
′
𝑖) 𝑓 ′𝑖 for 𝑖 = 1, . . . , 𝑚

⊢𝑇 ′ (𝐽 ′(𝑖)∗D
′
𝑖) 𝑔′𝑖 for 𝑖 = 1, . . . , 𝑚

⌊𝑔′′𝑖 ⌋ = ⌊𝑔′𝑖⌋ for object boundary D ′
𝑖

⊢𝑇 ′ (𝐼 ′(𝑖)∗D
′
𝑖) 𝑓 ′𝑖 ≡ 𝑔′′𝑖 by 𝛼𝑖 for object boundary D ′

𝑖

⊢𝑇 ′ 𝑡 ′′ : 𝐼 ′∗𝐶
′ ⌊𝑡 ′′⌋ = ⌊𝐽 ′∗𝑡 ′⌋

𝛽 suitable

⊢𝑇 ′ 𝐼 ′∗𝑡
′ ≡ 𝑡 ′′ : 𝐼 ′∗𝐶 by 𝛽

where

𝐼 ′ = ⟨ND′
1
1 ↦→ 𝑓 ′1 , . . . ,N

D′
𝑚

𝑚 → 𝑓 ′𝑚⟩ and 𝐽 ′ = ⟨ND′
1
1 ↦→𝑔′1, . . . ,N

D′
𝑚

𝑚 → 𝑔′𝑚⟩.

It remains to determine �⃗�
′
, �⃗�′, �⃗�′′, and 𝑡 ′′.

The terms �⃗�
′
and �⃗�′ are constructed from the first two rows of premises of the

tt-derivation in the same way as 𝑒′ in the previous case. The third row of premises
yields equations, which after an application of Lemma 3.2.17, take the form

⊢𝑇 ′ (𝐼 ′(𝑖)∗D
′
𝑖) 𝑓 ′′𝑖 ≡ 𝑔′′

𝑖
by 𝛽𝑖 .

As ⌊ 𝑓 ′
𝑖
⌋ = ⌊ 𝑓 ′′

𝑖
⌋, these can be rectified by reflexivity and transitivity to the desired

form
⊢𝑇 ′ (𝐼 ′(𝑖)∗D

′
𝑖) 𝑓 ′𝑖 ≡ 𝑔′′

𝑖
by 𝛼𝑖 .

Finally, we construct 𝑡 ′′ by converting ⊢𝑇 ′ 𝐽∗𝑡 ′ : 𝐽∗𝐶 along ⊢𝑇 ′ 𝐽 ′∗𝐶
′ ≡ 𝐼 ′∗𝐶 ′ by 𝛾,

which is derived as follows. The induction hypothesis for the last premise of (3.14)
gives

⊢𝑇 ′ 𝐶1 ≡ 𝐶2

116 CHAPTER 3. CONTEXT-FREE TYPE THEORIES

such that ⌊𝐶1⌋ = ⌊𝐼 ′∗𝐶 ′⌋ and ⌊𝐶2⌋ = ⌊𝐽 ′∗𝐶 ′⌋. Because ⊢𝑇 ′ 𝐼 ′∗𝐶
′ type and ⊢𝑇 ′ 𝐽 ′∗𝐶

′ type,
as well as ⊢𝑇 ′ 𝐶1 type and ⊢𝑇 ′ 𝐶2 type by Theorem 3.2.5, we may adjust the above
equation to

⊢𝑇 ′ 𝐼 ′∗𝐶
′ ≡ 𝐽 ′∗𝐶 ′,

which is only a symmetry away from the desired one.
The case of a type specific rule is simpler and dealt with in a similar fashion.

Cases TT-EqTy-Refl, TT-EqTy-Sym, TT-EqTm-Refl, TT-EqTm-Sym: each of these
is taken care of by applying the induction hypotheses to the premises, followed by
application of the corresponding cf-rule.
Cases TT-EqTy-Trans and TT-EqTm-Trans: Consider a derivation ending with term
transitivity

Θ;Γ ⊢𝑇 𝑠 ≡ 𝑡 : 𝐴 Θ;Γ ⊢𝑇 𝑡 ≡ 𝑢 : 𝐴
Θ;Γ ⊢𝑇 𝑠 ≡ 𝑢 : 𝐴

The induction hypotheses for the premises produce eligible judgements

⊢𝑇 ′ 𝑠′ ≡ 𝑡 ′ : 𝐴′ by 𝛼 and ⊢𝑇 ′ 𝑡 ′′ ≡ 𝑢′′ : 𝐴′′ by 𝛽

Because ⌊𝐴′⌋ = ⌊𝐴′′⌋ and ⌊𝑡 ′⌋ = ⌊𝑡 ′′⌋, we may convert the second judgement to 𝐴′,
and rectify the left-hand side, which results in

⊢𝑇 ′ 𝑡 ′ ≡ 𝑢′ : 𝐴′ by 𝛾.

Now CF-EqTm-Trans applies. The case of transitivity of type equality similar and
easier.
Case TT-Conv-Tm: Consider a conversion

Θ;Γ ⊢𝑇 𝑡 : 𝐴 Θ;Γ ⊢𝑇 𝐴 ≡ 𝐵
Θ;Γ ⊢𝑇 𝑡 : 𝐵

The induction hypotheses for the premises produce eligible judgements

⊢𝑇 ′ 𝑡 ′′ : 𝐴′ and ⊢𝑇 ′ 𝐴′′ ≡ 𝐵′ by 𝛼

Because ⌊𝐴′⌋ = ⌊𝐴′′⌋, we obtain 𝐴′ ≡ 𝐵′ by 𝛽, after which CF-Conv-Tm can be
used to convert ⊢𝑇 ′ 𝑡 ′′ : 𝐴′ to a judgement ⊢𝑇 ′ 𝑡 ′ : 𝐵′ by 𝛽 which is eligible for the
conclusion.
Case TT-Conv-EqTm: This case follows the same pattern as the previous one. □

Sharpest ever view of the Andromeda Galaxy.
Source: Hubble Space Telescope.

https://www.spacetelescope.org/images/heic1502a/

Chapter 4

An effectful metalanguage for type
theories

We present in this chapter the Andromeda metalanguage (AML), an effectful metalan-
guage designed to support the user in the construction of judgements in a context-free
standard type theory of their choice. AML assists the user in two ways, both of which
are inspired by techniques that have a long tradition in proof assistants for type theory.
First, given a context-free type theory1, AML induces a corresponding algorithmic
type system akin to bidirectional typing (Coquand 1996; Dunfield and Krishnaswami
2021) via its the operational semantics, which we will refer to as bidirectional eval-
uation. Second, AML supports effectful programming via operations and runners
(Ahman and Bauer 2019). Proof assistants rely on effects for a wide range of proof
development techniques, such as unification, backtracking, stateful hint databases, et
cetera. Runners are akin to exception handlers and offer a general, mathematically
sound methodology for working with user-definable effects. We will focus on those
aspects of AML that pertain to its purpose as a language for context-free type theories,
instead of distracting the reader with the addition of orthogonal, well-understood
language features such as algebraic data types.
To construct a judgement, the user writes and evaluates an AML program. The

computation of a result then amounts to the checking of a typing derivation. AML can
roughly be divided into two parts. One part of the language provides an interface to the
rules of type theory. We abstract over the implementation of the data types and rules
presented in Chapter 3 and assume it is exposed via an interface that we call the nucleus.
The nucleus provides the abstract data type of judgements, signatures, boundaries,
and other constituent parts of context-free type theories, as well as algorithms for
substitution and the effective metatheorems in Section 3.2. We exploit the fact that
these constructions on context-free theories all work on judgements. Only the proofs of
derivability of the results of the constructions proceed by induction on the derivations.
Lemma 3.2.13 for instance relates the given type 𝐴 of a term 𝑡 in a judgement ⊢ 𝑡 : 𝐴 to
the natural type 𝜏(𝑡) of 𝑡. The construction of the natural type, the conversion-residue,

1In the remainder of this chapter, all type theories will be assumed to be standard.

119

120 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

and thus the equality judgement ⊢ 𝜏(𝑡) ≡ 𝐴 by r(𝑡) relating the given and natural
type is defined in terms of the judgement ⊢ 𝑡 : 𝐴. Only the subsequent proof of
derivability of this judgement makes recourse to the derivation of ⊢ 𝑡 : 𝐴. Hence
an implementation of a nucleus can provide effective metatheorems without having
to store derivations. The bidirectional evaluation of computations allows contextual
information to flow from a computation to its sub-computations. Before the definition
of AML proper, we give the intuition behind bidirectional evaluation in Section 4.1.1.
The second part of AML supports general purpose programming features such

as functions, definitions by pattern matching, and, crucially, operations and runners.
These constructs can be used to program various techniques commonly found in
proof assistants, such as elaboration of unannotated syntax to fully annotated syntax,
simplification routines for expressions, or proof search. We present motivating
examples of programs based on runners in Section 4.1.2. Operations interact virtuously
with bidirectional evaluation through the Chk-Syn rule as we shall see in Section 4.3.2.
After this preliminary introduction to two central aspects of AML, we define the

syntax of AML (§4.2) and present its operational semantics (§4.3). We define derived
forms that extend AML with “syntactic sugar” for user convenience (§4.4). We discuss
the soundness and completeness of AML with respect to context-free type theories
(§4.5), and briefly present the implementation of AML in the Andromeda 2 prover
(§4.6).

4.1 AML preliminaries
In this section, we will present two core concepts of AML, bidirectional evaluation
and algebraic effect operations. Bidirectional evaluation is, to our knowledge, a new
extension of existing ideas in the field, and we will thus spend more time on introducing
it. The novelty of runners in AML lies in their use for proof development, which we
will showcase before proceeding to the formal definition of AML.

4.1.1 Bidirectional evaluation

Before addressing AML in detail, we will sketch declarative, algorithmic, and
bidirectional typing disciplines to prepare the ground for AML’s operational semantics.
For this purpose we will compare different presentations of a fragment of dependent
type theory with dependent products. We deliberately omit rules that would be required
to fully specify each system in order to focus our attention on the differences between
each discipline.
Presentations of type systems via inference rules such as we saw in Section 2.1.3

and in Section 3.1.2 induce a derivability relation: if the premises are derivable,
then so is the conclusion. This style of presentation is declarative in nature, i.e. it
describes what is derivable, but gives no information about how such a derivation
ought to be constructed. We take a declarative presentation of the variable, lambda
and application rules from Figure 4.1 as starting point of our comparison. The rules
are entirely standard, but let it be noted that Decl-Conv does not constrain the shape

4.1. AML PRELIMINARIES 121

of the term in the conclusion. As a result any of the terms may be derived either via
an application of its associated rule or via Decl-Conv.
When implementing a type system, we usually fix an algorithmic presentation

of these rules. At the very least, when applying a rule, we have to decide on the
order in which we verify that the premises are of the correct form. In order to decide
if a given term has a given type, the approach of algorithmic type checking is to
make the type system syntax-directed, in the sense that by merely looking at the
conclusion to be derived, one can decide which rule needs to be applied. If a type
theory can be made syntax-directed, the user only has to provide the conclusion
rather than writing derivations, and the algorithmic type system can determine the
next rule to use. If all premises are recorded in the conclusion, those too can be
checked recursively. As a result the user no longer has to write derivations, but only
judgements. Once an algorithmic presentation has been chosen, one has to prove that
the derivable judgements in both presentations coincide. The algorithmic rules in
Figure 4.1 eliminate the non-determinism incurred by conversion by confining the
use of type equality to Algo-App, but remain otherwise unchanged. This example
is inspired by (Pierce 2005, Sec. 2.4) where further details such as the rules for type
equality and the proof of equi-derivability of the two presentations can be found. Such
a proof would only be a distraction at this point, and we shall proceed to the next
system.

Decl-Var
𝑥:𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
Decl-Lambda

Γ ⊢ 𝐴 type Γ, 𝑥:𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ λ(𝑥:𝐴.𝑏) : Π(𝑥:𝐴.𝐵)

Decl-App
Γ ⊢ 𝑠 : Π(𝑥:𝐴.𝐵) Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑠 𝑡 : 𝐵[𝑡/𝑥]
Decl-Conv

Γ ⊢ 𝑠 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝑠 : 𝐵

Algo-Var
𝑥:𝐴 ∈ Γ

Γ ⊢ 𝑥 : 𝐴
Algo-Lambda

Γ ⊢ 𝐴 type Γ, 𝑥:𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ λ(𝑥:𝐴.𝑏) : Π(𝑥:𝐴.𝐵)

Algo-App
Γ ⊢ 𝑠 : Π(𝑥:𝐴1.𝐵) Γ ⊢ 𝑡 : 𝐴2 Γ ⊢ 𝐴1 ≡ 𝐴2

Γ ⊢ 𝑠 𝑡 : 𝐵[𝑡/𝑥]

Figure 4.1: Declarative and algorithmic rules

In algorithmic type checking, the context, term, and type are given as input, and
the rules establish the typing relation. In order to further assist the user, we can try
to infer types when possible. Many algorithms for type inference exist, for example
based on unification or constraint resolution (Pierce 2002; Pierce 2005), and these
techniques have been scaled up to dependent type theory (Harper 1985), but careful
analysis is required to show that the typings thus obtained are faithful to the declarative

122 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

system. We will consider the bidirectional typing approach to the problem, which is
close to the algorithmic presentation and thus generalises to context-free type theories.

Bidi-Var
𝑥:𝐴 ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝐴
Bidi-Lambda

Γ, 𝑥:𝐴 ⊢ 𝑏 ⇐ 𝐵

Γ ⊢ λ(𝑥.𝑏) ⇐ Π(𝑥:𝐴.𝐵)

Bidi-App
Γ ⊢ 𝑠 ⇒ Π(𝑥:𝐴.𝐵) Γ ⊢ 𝑡 ⇐ 𝐴

Γ ⊢ 𝑠 𝑡 ⇒ 𝐵[𝑡/𝑥]

Bidi-Chk-Syn
Γ ⊢ 𝑠 ⇒ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵

Γ ⊢ 𝑠 ⇐ 𝐵

Bidi-Ascribe
Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ⇐ 𝐴

Γ ⊢ 𝑠 as 𝐴 ⇒ 𝐴

λCF-Var
⊢ 𝐴 type

⊢ a𝐴 =≫ a𝐴 : 𝐴

λCF-Lambda
a𝐴 fresh ⊢ 𝑏[a𝐴/𝑥] ⇐ 𝐵[a𝐴/𝑥] ≫ 𝑏′ : 𝐵′

⊢ λ(𝑥.𝑏) ⇐ Π(𝑥:𝐴.𝐵) ≫ λ(𝑥:𝐴.𝑏′) : Π(𝑥:𝐴.𝐵′[𝑥/a𝐴])

λCF-App
⊢ 𝑠 =≫ 𝑠′ : Π(𝑥:𝐴.𝐵) ⊢ 𝑡 ⇐ 𝐴 ≫ 𝑡 ′ : 𝐴′

⊢ 𝑠 𝑡 =≫ 𝐵[𝑡 ′/𝑥]

λCF-Chk-Syn
⊢ 𝑠 =≫ 𝑠′ : 𝐴 ⊢ 𝐴 ≡ 𝐵

⊢ 𝑠 ⇐ 𝐵 ≫ 𝑠′ : 𝐵

λCF-Ascribe
⊢ 𝐴 type ⊢ 𝑠 ⇐ 𝐴 ≫ 𝑠′ : 𝐴′

⊢ 𝑠 as 𝐴 =≫ 𝑠′ : 𝐴′

Figure 4.2: Bidirectional typing and elaboration rules, with and without contexts

Bidirectional typing was first published in (Pierce and Turner 1998) and attributed
by Pierce to John Reynolds (Dunfield and Krishnaswami 2021). See (Pfenning 2004;
McBride 2018; Dunfield and Krishnaswami 2021) for a more complete introduction
to the topic than can be presented here, and e.g. (Lennon-Bertrand 2021) for a recent
work on the calculus of inductive constructions. The term “bidirectional” refers to the
splitting of the typing relation between terms and their types in two. The first relation
is “inference mode”, which takes a context and a term as input and synthesises an
appropriate type. The second is “checking mode”, where a context, term, and type
are inputs and the output is simply the success of the typing procedure, i.e. a value
of unit type, witnessing that type checking did not fail. We can refine the notion of
input as follows. The context and, in checking mode, type inputs are assumed to be
well-formed, and each rule has to maintain this invariant. The term whose type is being
synthesised or checked is the subject of the rule. The rules named Bidi-* in Figure 4.2
are a bidirectional reformulation of the algorithmic rules of Figure 4.1, where we
write Γ ⊢ 𝑠 ⇒ 𝐴 for synthesis and Γ ⊢ 𝑠 ⇐ 𝐴 for checking. By exploiting contextual

4.1. AML PRELIMINARIES 123

information, the amount of annotations required can be reduced. The user does not
need to give the type of terms that can be inferred. For instance the type of a variable
need not be provided, as it can be looked up in the typing context Γ. The type of the
application in Bidi-App can be synthesised once the type of 𝑠 is inferred. Checking
propagates available information: The mode of use of 𝑡 as argument to the dependent
function 𝑠 in Bidi-App allows it to be checked against the type 𝐴. The binder in the
conclusion of Bidi-Lambda does not need a typing annotation because the type of 𝑥
can be read off the typeΠ(𝑥:𝐴.𝐵) under analysis. The type 𝐴 is an input to the rule and
can thus be assumed to be well-formed2. We exploit this fact by dropping the premise
Γ ⊢ 𝐴 type. The conversion rule takes the form of Bidi-Chk-Syn, and kicks in when
an inferring term such as a variable is used in a checking position, say as the argument
to a function. Finally, the switch from inference to checking can be stipulated via
Bidi-Ascribe. It is needed when a checking term like λ(𝑥.𝑥) is used in an inferring
position. The first premise of Bidi-Ascribe requires that 𝐴 be a well-formed type. In
a fixed type theory with universes𝑈𝑖 one would customarily phrase this premise as
Γ ⊢ 𝐴 ⇐ 𝑈𝑖. We will see how to check such premises in the absence of universes
in pAML-Ascribe. Note that despite the presence of Bidi-Chk-Syn which does not
impose syntactic restrictions on its subject, the system is again syntax directed, in the
sense that each language construct is either synthesising or checking and only one rule
is applicable at any point.
The bidirectional presentation is more user friendly than the previous algorithmic

system because it allows the omission of typing annotations and the inference of certain
terms. While type inference can be achieved via other means such as unification, the
bidirectional approach has certain advantages. It is arguably conceptually simpler for
the user to predict the behaviour of a bidirectional rule compared to the behaviour of
the unification engine, leading to fewer surprises. Nothing precludes the combination
of bidirectional typing with other powerful type inference methods based e.g. on
unification (Norell 2007; The Coq development team 2021b). In case there is a
mismatch between types, it can only occur in the Bidi-Chk-Syn rule, which means
that error messages can tell the user where the problem arose. Finally, the simplicity
of bidirectional typing allows straightforward proofs of equi-derivability with the
declarative presentation.
The λCF rules in Figure 4.2 modify the preceding system in two ways. In

the spirit of context-free type theories, contexts are dropped and each variable is
instead annotated with its type. Furthermore, we switch from bidirectional typing
to bidirectional elaboration, which has previously been studied in the context of the
calculus of (co-) inductive constructions (Asperti et al. 2012). In the Bidi-* rules,
successful synthesis produced a type and checking simply succeeded. In λCF, both
synthesis ⊢ 𝑡 =≫ 𝑡 ′ : 𝐴 and checking ⊢ 𝑡 ⇐ 𝐴 ≫ 𝑡 ′ : 𝐴′ take a term (and a type
in the case of checking) and produce a fully annotated judgement as output. The
bidirectional discipline makes it easy to prove that for the simple fragment of type

2We rely here on the fact that well-formedness of Π(𝑥:𝐴.𝐵) implies well-formedness of 𝐴, which
holds for standard type theories by inversion (Theorem 3.2.14).

124 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

pAML-Var
a𝐴 fresh

var(𝐴 type) 〜 a𝐴 : 𝐴

pAML-Lambda

𝑐𝐴 @ □ type ✓ 𝐴 type
𝑐𝐵 @ {𝑥:𝐴} □ type ✓ {𝑥:𝐴} 𝐵 type
𝑐𝑏 @ {𝑥:𝐴} □ : 𝐵 ✓ {𝑥:𝐴} 𝑏 : 𝐵

lambda(𝑐𝐴, 𝑐𝐵, 𝑐𝑏) 〜 λ(𝐴, {𝑥}𝐵, {𝑥}𝑏) : Π(𝐴, {𝑥}𝐵)

pAML-App

𝑐𝐴 @ □ type ✓ 𝐴 type
𝑐𝐵 @ {𝑥:𝐴} □ type ✓ {𝑥:𝐴} 𝐵 type

𝑐𝑠 @ □ : Π(𝐴, {𝑥}𝐵) ✓ 𝑠 : Π(𝐴, {𝑥}𝐵)
𝑐𝑡 @ □ : 𝐴 ✓ 𝑡 : 𝐴

app(𝑐𝐴, 𝑐𝐵, 𝑐𝑠, 𝑐𝑡) 〜 app(𝐴, {𝑥}𝐵, 𝑠, 𝑡) : 𝐵[𝑡/𝑥]

pAML-Chk-Syn

𝑐 〜 J 𝑟 =

{︄
J if J = B 𝑒

coerce-to(J,B) otherwise

𝑐 @ B ✓ 𝑟

pAML-Ascribe
𝑐 @ B ✓ J

𝑐 as B 〜 J

Figure 4.3: Pseudo-AML rules

theory here presented, if ⊢ 𝑡 =≫ 𝑡 ′ : 𝐴 then 𝑡 = 𝑡 ′, and if ⊢ 𝑡 ⇐ 𝐴 ≫ 𝑡 ′ : 𝐴′ then
𝑡 = 𝑡 ′ and 𝐴 = 𝐴′.
There is now a distinction between the input-language for subjects and the

judgements produced as output. An expression of the input language still looks type
theoretic, and the rules can be seen as a translation from an unannotated language to
a fully annotated one. This is the perspective advocated by Pollack (1992), where
the translation is used as a vehicle of equi-derivability between the two systems. The
elaboration from implicit to explicit syntax does not use bidirectional typing but
instead is left unspecified in (Pollack 1992), suggesting it could be instantiated for
instance by a constraint solver in the style of (Harper and Pollack 1991). Another
advantage of producing judgements besides the connection with translations is that
the results we manipulate are always well-formed so long as the rules are sound. This
perspective will become more important once we extend the input language to contain
non-type-theoretic constructs. When implementing a metalanguage for type theory,
the datatype for judgements can be left abstract in the runtime. Only the trusted
nucleus which implements the rules needs to manipulate the constituent parts of a
judgement. Contrary to the Bidi-* rules, we never need to assemble a judgement
⊢ 𝑠 : 𝐴 from checking 𝑠 against 𝐴 as checking elaboration will always produce a fully
formed judgement.
In bidirectional evaluation, sketched in Figure 4.3 for a simplified pseudo-AML

4.1. AML PRELIMINARIES 125

language, the translation from an input language to judgements is taken seriously and
interpreted as the evaluation of computations to results. These pAML rules are not
part of AML but rather illustrate the idea behind AML’s operational semantics on
some fictitious mini-language restricted to a specific type theory involving lambda and
app, whereas the operational semantics of AML will be defined for arbitrary standard
type theories.
The moded discipline is retained, but the application of type-theoretic constructors

such as λ or app is treated generically as synthesis, because the interplay between
a term constructor and its type is specific to each type theory. In synthesis 𝑐 〜 J,
the computation 𝑐 is input and J is the result of evaluation. In checking mode
𝑐 @ B ✓ 𝑟, the computation 𝑐 and the boundary B are input, and 𝑟 is the result of
evaluation. Checking mode is generalised in the spirit of finitary type theories to allow
the checking of a computation against arbitrary boundaries. This generalisation solves
the aforementioned question “How do we check that 𝐴 is a valid type without referring
to universes?”, by running the computation 𝑐𝐴 in pAML-Lambda in checking mode
against the boundary □ type. The fact that lambda is a synthesising computation and
no longer exploits information available from checking against a Π-type may seem
like a shortcoming at first. After all, saving the user from writing typing annotations
was one of the benefits of bidirectionalism. The great advantage of working with
standard type theories, however, is that all arguments are checking, because a standard
rule provides sufficient information to construct full boundaries for each subsequent
argument from the preceding results. We will see in Section 4.4.3 how to recover the
original checking semantics of λCF-Lambda in AML.
In the evaluation of 𝑐𝐵, abstractions make a reappearance, both on the checking

boundary and on the resulting judgement. Ascription still switches from inferring to
checking evaluation, but now takes a general boundary instead of a type.
The result of a successful computation is a CFTT judgement. Since we focused

on bidirectional systems, the compatibility check between potential types for a term,
“the type it wants to have” and “the type at which it is used” has been confined
to the Chk-Syn rule. In pAML-Chk-Syn, we accordingly have to verify that the
computation 𝑐 synthesised a judgement with the required boundary. Foreshadowing
the presence of effect operations and runners in AML, the pAML-Chk-Syn rule also
describes what to do if the boundary of J does not match B. In this case, rather
than simply failing, a coerce-to(J,B) operation is triggered, which will give the
program under evaluation a chance to rectify the situation and provide a judgement,
probably based on J, that does fit B.
Consider for example the situation where J = 𝑠 : 𝐴 and B = □ : 𝐵. We can

recover the behaviour of previous Chk-Syn rules by providing a runner that computes
a judgement 𝐴 ≡ 𝐵 by 𝛼, performs the conversion of 𝑠 to 𝐵, and yields the resulting
judgement.
How will the method of bidirectional evaluation fare for context-free type theories?

The rules for object judgements in standard context-free type theories are such that for
any symbol there is exactly one rule by Definition 3.1.14 and each such rule further
records all of the object premises as arguments to the symbol in question. We thus

126 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

stand a good chance to make the system syntax-directed, and we have seen how to
generalise checking mode to boundaries. A possible complication arises from the fact
that symbol rules are allowed to have equational premises. While context-free type
theories are careful to record the assumptions used in such premises in the conclusion,
they will not record any evidence that would allow us to reconstruct a derivation for
the purposes of type-checking. As context-free type theories allow the formulation of
theories with undecidable judgemental equality, we cannot provide a once-and-forall
algorithm to check if a judgement J can be transformed into one with boundary B. In
our quest to offer a convenient method for working with context-free type theories we
therefore have to consider the possibility that a conversion is required at any moment,
and that equational premises need to be reconstructed. We shall see that operations
and runners provide a natural solution to this problem, supporting the user in the
implementation of proof assistant techniques.

4.1.2 Operations and runners

In this section, we describe the basic intuition behind operations and runners. We
refer to (Pretnar 2015) and (Ahman and Bauer 2019) for background on algebraic
effects and handlers and to runners respectively, and focus on their use for proof
development here instead. For the sake of our purposes, a runner is best thought of as
an effect handler that resumes its continuation exactly once, and in tail position. They
further differ from the runners of Ahman and Bauer in that they do not carry state. We
will illustrate this slightly cryptic sentence with two examples, one based on printing
and one based on the coerce-to operation that we encountered in Figure 4.3 in the
preceding section.
For the debug-print example we will refer to the beta-rule, presented here

declaratively in context-free style. Context-free type theories can represent certain
theories such as extensional type theory (Martin-Löf 1982) in which untyped beta-
reduction is unsound, and as a consequence the following version of the beta-rule
comes with full typing annotations.

beta
𝐴 type {𝑥 : 𝐴} 𝐵 type {𝑥 : 𝐴} 𝑏 : 𝐵 𝑎 : 𝐴

app(𝐴, {𝑥 : 𝐴} 𝐵, lambda(𝐴, {𝑥 : 𝐴} 𝐵, {𝑥 : 𝐴} 𝑏), 𝑎) ≡ 𝑏[𝑎/𝑥] : 𝐵[𝑎/𝑥]

The declarations

operation coerce-to : judgement ∗ boundary→ judgement
operation debug-print : string ∗ judgement→ unit

indicate that and coerce-to takes a pair of a judgement and a boundary as argument.
A runner handling coerce-to is expected to produce a judgement to be returned to the
point where the operation was invoked. Likewise, debug-print takes a message and a
judgement, and a matching runner should produce a unit value. At first, an operation
may seem a bit like a function call, but the resolution of an operation to a handling
runner happens dynamically at runtime. This allows us to locally modify the behaviour

4.1. AML PRELIMINARIES 127

of a program that performs operations by wrapping it with a particular runner. The
function beta-reduce that takes a term, matches it, and, if the head constructor is a
beta redex, applies the beta rule to produce a judgemental equality between t and the
reduced b[a], and calls itself recursively.
let rec beta-reduce t =
match t with
| app(?A, ?B, lambda(_, _, ?b), ?a) →
debug-print ("redex found:", t);
let eq = beta A B b a in debug-print ("equation:", eq);
(match eq with _ ≡ ?t' →
let eq' = beta-reduce t' in
eq-tm-transitivity eq eq')

| _ → debug-print ("not a redex:", t); eqtm-refl t

At several points, the debug-print operation is called. Suppose that the beta-reduce
is used in the context of some larger program. Suppose further that for most of the
program, beta-reduce works as intended, but at some point it fails because with an
error about an incorrect use of the beta rule. It may be desirable to locally change
the behaviour of debug-print, silencing all calls except for those in vicinity of the
offending redex. This can be achieved by wrapping earlier calls in the silence runner,
and using the std-err runner.
let silence = runner debug-print (msg, j) → ()
let std-err = runner debug-print (msg, j) →

fprintf stderr "[Debug] %s: %j\n" msg j
let e2 = let e1 = with silence run

let y = c1 in
beta-reduce y in

with std-err run
let z = c2 in
beta-reduce z

During the computation of x, calls to beta-reduce that may occur in c1 and the
call beta-reduce y will trigger the debug-print operation. As the computation is
wrapped in a with silence run . . . clause, the calls will jump to the silence runner,
which does nothing and returns () to the call site in beta-reduce. The evaluation
of c2 and the subsequent call to beta-reduce z instead are handled by the std-err
handler, which prints a debugging message to the stderr channel. This completes the
first example. We have seen how a runner can be used locally to dynamically change
the behaviour of a program.
The second example showcases how this mechanism can be exploited to allow a

program to take advantage of local information.
let r = runner
| coerce-to (J, bdry) →
match (J, bdry) with
| ((_ : ?A), (□ : ?B) → let e = eqchk A B in convert J e
| _ → coerce-to (J, bdry)

128 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

The runner r handles a coerce-to operation by matching its arguments to see if J and
bdry are a term judgement and a term boundary respectively, and calling a function
called eqchk that produces an equality judgement between A and B, which is then used
to convert J to the desired type. In case the runner is called with a judgement or
boundary of different shape, the operation is instead re-raised. The eqchk function
here could be some specialised equality checking function for the type theory at hand,
applying congruence rules, reducing redices, et cetera.
For the sake of the next example, we will assume that we work in a type theory

with equality reflection. The reflection rule takes a type, two terms, and a proof
of equality between them and returns the corresponding judgemental equality. The
implementer of eqchk may have included an escape hatch. Say that eqchk raises an
equate operation if it fails to prove a certain equality. If we are in a context where a
certain equation is known to hold, we can then provide a local runner that exploits this
assumption by handling equate.

operation equate : judgement ∗ judgement→ judgement
let X = {m : Nat} {n : nat} {v : Vec m} {e : Eq Nat m n}

let by-e = runner equate (J1 , J2) →
match (J1 , J2) with
| ((?x : Nat), (?y : Nat)) →
if x = n && y = m then
reflect Nat m n e

else
equate (J1 , J2)

| (_, _) → equate (J1 , J2)
in with by-e run

with r run
coerce-to(v, (□ : Vec n))

In the above example, we provide a runner using the local information provided in
by the abstraction, in particular the variable e. The by-e runner handles equate by
matching the arguments to ensure that the equation m ≡ n : Nat is requested. If this
is the case, the runner uses the reflect rule that turns the term e : Eq Nat m n into
the required equation. In all other cases, the runner re-raises the operation. We wrap
the coerce-to call with the runner r, which will try to equate the type of v, Vec m,
and the type on the boundary, Vec n. It can apply congruence, but has no way of
proving the general equation m ≡ n : Nat. When equate is performed, by-e will
return the required equation, and r can finish its work by appealing to conversion
along Vec m ≡ Vec n.
These examples show an important application of operations and runners in AML,

namely as a mechanism to inhabit equations without forcing the user to write down their
derivations. Historically, this was the original purpose of operations in Andromeda,
but the mechanism turns out to be very versatile. We can, for instance, use a runner for
coerce-to to install “implicit coercions”, which are frequently encountered in proof
assistants.

let bool-of-nat = runner coerce-to (J, bdry) →

4.2. AML SYNTAX 129

match (J, bdry) with
| ((?n : Nat), (□ : Bool)) → match n with O → false | S _ → true
| (_, _) → coerce-to (J, bdry)

let monoid-of-group = runner coerce-to (J, bdry) →
match (J, bdry) with
| ((?g : Group), (□ : Monoid)) → g.monoid
| (_, _) → coerce-to (J, bdry)

It takes little imagination to see how to use coerce-to to implement, for instance,
typeclasses (Sozeau and Oury 2008) or canonical structures (Mahboubi and Tassi
2013).
This concludes our tour of operations and runners by example. The next section

describes the operational semantics of AML, and in particular how AML combines
operations and runners with bidirectional evaluation.

4.2 AML syntax

The expressions of the Andromeda metalanguage are classified as inert values and
(potentially) effectful computations, which evaluate to results. This division is
customary for effectful languages (Bauer and Pretnar 2015) because the isolation
of effects simplifies the presentation of the operational semantics: with the notable
exception of let, all language constructs only contain one computation and thus only
one possible source of effects, and we can thus consider effects in the sequence dictated
by successive let-bindings.

Concrete syntax Abstract syntax Meaning Mode

Computation 𝐶 ∋ 𝑐 ::=
return 𝑣 return(𝑣) value 〜

let 𝑥 = 𝑐1 in 𝑐2 let(𝑐1 , 𝑥. 𝑐2) local definition 〜, ✓
𝑣1 𝑣2 fun-apply(𝑣1 , 𝑣2) function application 〜, ✓
match 𝑣 with (𝑝 ⇒ 𝑐)∗ match(𝑣, (𝑝. 𝑐) ∗) case match 〜, ✓
op 𝑣 perform(op, 𝑣) perform operation 〜, ✓
with 𝑣 run 𝑐 run(𝑣, 𝑐) run with runner 〜, ✓

Figure 4.4: Syntax of general AML computations

The computations in Figure 4.4 are familiar general-purpose programming con-
structs. We can embed values into computation via return, let-bind the result
computations of 𝑐1 in 𝑐2, apply functions, and perform case analysis by pattern
matching. An operation op can be performed by applying it to an argument value. For
simplicity’s sake operations are presented in their generic form (Plotkin and Power
2003), where the user supplies no explicit continuation. A computation 𝑐 can be run
wrapped with a runner 𝑣, allowing 𝑣 to handle operations raised by 𝑐.

130 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

For each construct we give a notation that we may use in examples, the correspond-
ing abstract syntax with binding information, and the evaluation mode in the sense
of bidirectional evaluation. Most of the general computations can be run in either
synthesis〜 or checking ✓ mode. As their nature is not type theoretic, they have no
use for a checking boundary, and can thus be run in synthesis mode, but if available,
they can propagate the checking information to sub-computations. Computations that
can be evaluated in both modes are called neutral. The exception here is return 𝑣, as
𝑣 is already fully evaluated and has nowhere to pass a checking boundary on to.

Concrete syntax Abstract syntax Meaning Mode

Computation 𝐶 ∋ 𝑐 ::=
𝑐 as 𝑣 ascribe(𝑐, 𝑣) boundary ascription 〜

tt-var 𝑣 tt-var(𝑣) fresh TT variable 〜

tt-abstr 𝑣1 𝑣2 tt-abstr(𝑣1 , 𝑣2) abstraction 〜

tt-subst 𝑣1 𝑣2 tt-subst(𝑣1 , 𝑣2) substitution 〜

tt-mvar 𝑣 tt-mvar(𝑣) fresh TT metavariable 〜
tt-derived 𝑣1 𝑣2 tt-derived(𝑣1, 𝑣2) derivable rule 〜

tt-inst 𝑣1 𝑣2 tt-inst(𝑣1 , 𝑣2) rule application 〜

tt-congr(𝑣1 , 𝑣2 , 𝑣∗) tt-congr(𝑣1 , 𝑣2 , 𝑣∗) congr. rule instance 〜

𝑣1
α
== 𝑣2 tt-alpha-equal(𝑣1, 𝑣2) alpha equality 〜

𝑣1
ε
== 𝑣2 tt-erasure-equal(𝑣1, 𝑣2) erased syntactic eq. 〜

tt-refl 𝑣1 𝑣2 tt-refl(𝑣1 , 𝑣2) reflexivity of equality 〜

tt-convert 𝑣1 𝑣2 tt-convert(𝑣1, 𝑣2) conversion 〜

□ type tt-bdry-ty type boundary 〜

tt-bdry-tm 𝑣 tt-bdry-tm(𝑣) term boundary 〜

tt-bdry-eqty 𝑣1 𝑣2 tt-bdry-eqty(𝑣1, 𝑣2) type eq. boundary 〜

tt-bdry-eqtm 𝑣1 𝑣2 𝑣3 tt-bdry-eqtm(𝑣1, 𝑣2, 𝑣3) term eq. boundary 〜

𝜕𝑣 tt-bdry-of(𝑣) bdry. of a judgement 〜

Figure 4.5: Syntax of type theoretic AML computations

The computations in Figure 4.5 implement the rules of context-free type theories.
In order to guarantee that only derivable judgements can be constructed, we never
manipulate pieces of syntax such as raw terms directly, but always as part of a
judgement. Boundary ascription changes the evaluation mode from synthesising to
checking. The tt-∗ computations are smart constructors that directly call the nucleus.
All of the nucleus computations are synthesising, but we shall see in Section 4.4
how derived constructs can be implemented on top of core AML to exploit checking
information. The selection of tt-computations is deliberately minimal. Following the
definition of context-free type theories (Definition 3.1.11), variables and metavariables
can be created via tt-var and tt-mvar. In order to ensure the well-typedness of
annotations (Definition 3.1.12), a type judgement (resp. boundary) has to be provided.
An abstraction is formed via tt-abstr, and tt-subst implements the admissibility of
substitution. The tt-derived and tt-inst computations allow the construction of
derivable rules (Definition 2.1.17) and rule application via instantiation. Congruence

4.2. AML SYNTAX 131

rules for symbols and metavariables are available through tt-congr. A boolean test
for alpha equality of boundaries and judgements is provided via tt-alpha-equal. A
boolean test for FTT alpha equality of the erasure of boundaries and judgements is
provided via tt-erasure-equal. Judgemental equalities can be formed via tt-refl
and eliminated via tt-convert, which implements conversion of both term and
term-equality judgements. Symmetry and transitivity of judgemental equality are not
included as primitives as they can be postulated as standard context-free equality rules
via the rule toplevel command (Fig. 4.7). We do tacitly assume both rules to be part
of any type theory in AML, as the metatheorems we implement rely on them, but
do provide syntactic forms for them in order to simplify the presentation of syntax
and operational semantics of AML. Finally there are four smart constructors for the
creation of boundaries, and one that projects a judgement to its boundary.

Concrete syntax Abstract syntax Meaning

Value 𝑉 ∋ 𝑣 ::=
𝑥 var(𝑥) variable
fun 𝑥 → 𝑐 fun(𝑥. 𝑐) function
runner (| op-case)∗ runner(op-case∗) runner
Unbounded Unbounded bound constructor
Boundary 𝑣 Boundary(𝑣) bound constructor
false false bool constructor
true true bool constructor
∅ J judgement, see Fig. 3.1
∅ B boundary, see Fig. 3.1
∅ rule 𝑀 : B =⇒ 𝑣 rule

where op-case ::=
op 𝑥 𝑦 → 𝑐 case-op(op, 𝑥.𝑦.𝑐) operation case

Result 𝑅 ∋ 𝑟 ::=
∅ val(𝑣) value
∅ op(op, 𝑣1, 𝑣2, 𝑥.𝑐𝜅) operation

Identifier 𝑥, 𝑦, op, 𝑀, 𝑅, 𝑆 ::=
x, y, op, M, R,S, . . . 𝑥 identifiers

Figure 4.6: Syntax of AML values and results

The values of AML (Fig. 4.6) can again be classified into general programming and
type theoretic. There are variables, functions, runners, and AML datatype constructors.
A runner 𝑣 can have a number of different operation cases, each of which binds two
variables, say 𝑥 and 𝑦, in the computation 𝑐 which gets executed if the operation op
is encountered. Upon evaluation of 𝑐, the operation argument gets substituted for 𝑥,
and 𝑦 gets replaced either by Unbounded if op is performed in synthesis mode, or by
Boundary B if op is performed while checking against B.
The type theoretic values are judgements, boundaries, and rules. While general

purpose values can be provided directly by the user, type theoretic values can only be
obtained as the result of evaluation of a type theoretic computation, and therefore no

132 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

concrete syntax is available for this class. The full grammar of the constituent parts
of judgements and boundaries is given in Figure 3.1. Rules are presented in curried
form, and can be applied via tt-inst to one premise at a time, resulting either in a
judgement if no further metavariable abstraction is encountered or in a further rule
where 𝑀 has been instantiated with the given premise.
The results that evaluation produces are either values or operations. An operations

is tagged with its name op and carries an argument value 𝑣1, a checking bound 𝑣2, and
a continuation 𝑥.𝑐𝜅 , which gets built up as the operation bubbles up from its origin to
a runner with a clause for op, and gets invoked after the runner finishes its work.

Concrete syntax Abstract syntax Meaning

Top-runner stack R ::=
R [𝑐] = with 𝑣1 run . . . with 𝑣𝑛 run 𝑐

Theory T ::=
{. . . , 𝑅 ↦→ (rule 𝑀1 : B1 =⇒ ... =⇒ rule 𝑀𝑛 : B𝑛 =⇒ j) , . . .}

Program cmd* ::=
𝑐𝑚𝑑0 ; . . . ; 𝑐𝑚𝑑𝑛 [𝑐𝑚𝑑0 ; . . . ; 𝑐𝑚𝑑𝑛] list of commands

Toplevel command cmd ::=
let 𝑥 = 𝑐 let(𝑥, 𝑐) definition
rule 𝑅 𝑣 rule(𝑅, 𝑣) rule definition
operation op : op-mlsig operation(op, op-mlsig) operation declaration
with 𝑣 end with(𝑣) install top runner

op-mlsig ::=
mltype1 → mltype2 (mltype1,mltype2) operation ML signature

Pattern 𝑝 ::=
?𝑥 p-var(𝑥) variable
_ p-ignore ignore
𝑆(𝑝∗) p-sym(𝑆, 𝑝∗) symbol application
mvar 𝑝(𝑝∗) p-mvar(𝑝, 𝑝∗) metavar. application
κ(𝑝1, 𝑝2) p-convert(𝑝1, 𝑝2) conversion term
□ type p-bdry-ty type boundry
□ : 𝑝 p-bdry-tm(𝑝) term boundry
𝑝1 ≡ 𝑝2 by □ p-bdry-eqty(𝑝1, 𝑝2) type equality boundry
𝑝1 ≡ 𝑝2 : 𝑝3 by □ p-bdry-eqtm(𝑝1, 𝑝2, 𝑝3) term equality boundry
{_ : 𝑝} _ p-abstr(𝑝) abstraction
rule (_ : 𝑝) _ p-rule(𝑝) rule

Figure 4.7: Syntax of AML toplevel commands and patterns

An AML program is composed of a sequence of toplevel commands (Fig. 4.7).
A toplevel let-binding allows us to evaluate a computation and bind the resulting
value in the rest of the program. A new type theoretic rule can be defined via
rule 𝑅 𝑣, where 𝑣 should be a rule boundary (Definition 3.1.4), i.e. a boundary b,
possibly with several metavariables 𝑀𝑖 : B𝑖 abstracted. A rule definition extends the

4.3. AML OPERATIONAL SEMANTICS 133

theory T with the symbol rule (Definition 3.1.5) or equality rule (Definition 3.1.6)
associated to the rule boundary 𝑣. The declaration of an operation has no operational
bearing, but is included here for the sake of readability of example code, and because
it is required for the static AML typechecking that the Andromeda 2 implementa-
tion performs. Besides user declared operations, AML has one built-in operation
coerce : judgement→ judgement. Similar to the coerce-to operation example we
encountered in Section 4.1.2, coerce is used to give the user the occasion to rectify
the boundary of a judgement J with a runner that handles coerce J. Installing a top
runner wraps the rest of the program in the runner, by extending the current runner
stack. The runner stack R is a simple evaluation environment consisting of nested
runners that wrap around a hole, into which we can plug a computation.
The patterns in Figure 4.7, to be used in conjunction with a match statement,

implement further type theoretic metatheorems. To distinguish pattern variables from
constructors we require that they be prefixed with ?, i.e. ?x binds the variable x, while
true matches the constructor true. A symbol application pattern makes it possible
to recover the premises used to derive a symbol rule by inversion, and metavariable
patterns works analogously. Lemma 3.2.13, which relates the type of a term 𝑠 to the
natural type of 𝑠, is implemented as the p-convert(𝑝1, 𝑝2) pattern. The p-ty, p-tm,
p-eqty, and p-eqtm patterns expose the presuppositivity theorem, allowing to extract
the presuppositions from the boundary of a judgement, and likewise for boundaries.
The type of an abstraction can be recovered via p-abstr, and similarly for rule. To
avoid redundancy in AML, we do not allow a pattern for the body of the abstraction,
as the body can be recovered by substituting a fresh variable of the appropriate type.

4.3 AML operational semantics

The essence of AML’s operational semantics is obtained by combining bidirectional
evaluation with operations and runners. We adopt a big step, “fine-grained call-by-
value” (Levy et al. 2003) style of presentation. We define two evaluation functions,
synth-comp : Th × 𝐶 ⇀ 𝑅, and check-comp : Th × 𝐶 × 𝐵 ⇀ 𝑅. Here Th, 𝐶, 𝐵, and
𝑅 stand for CFTT theories, computations, CFTT boundaries, and results respectively.
We will use the notation T | 𝑐 〜 𝑟 for “𝑐 synthesises 𝑟” and T | 𝑐 @ B ✓ 𝑟 for “𝑐
checked against B evaluates to 𝑟”. The evaluation functions are recursively defined by
inference rules, where premises are either further evaluations or side conditions, and
premises are evaluated left to right, top to bottom. We will usually omit the theory
argument T in the notation for the evaluation functions. It is understood that T is
passed on unmodified during each recursive call to synth-comp or to check-comp in a
premise; the only place where T is accessed is during pattern matching, the only place
where the theory can be extended is at the toplevel.

Interlude: On AML typing The operational semantics presented in this section
is partial and evaluation can fail at any moment when an ill-formed use of a type
theoretic rule is encountered. It is desirable to rule out such failure at runtime, and the

134 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

standard technique to do so is to equip the language with a type system that ensures
that well-typed programs cannot go wrong (Milner 1978). The reason why we do
not present a type system for AML is that such a type system would have to be able
to classify judgements of context-free type theories in order to ensure that all rule
applications occurring in a program are well-formed. In other words, the system would
have to be at least as expressive as the system AML is supposed to capture. While it is
certainly reasonable to expect that CFTT can be expressed within a sufficiently strong
dependent type theory, the effectful nature of AML complicates the situation. Effects in
type theory are the topic of ongoing research (Swamy et al. 2016; Ahman, Ghani et al.
2016; Pédrot and Tabareau 2019) and designing a safe type system for AML would be
a research problem in its own right, and is thus beyond the scope of the present thesis.
In an effort to provide the user at least with safety for the non-type-theoretic part of
the language, the implementation of AML in Andromeda 2 provide an off-the-shelf
Hindley-Milner style simple type system with prenex polymorphism and abstract types
for judgements, boundaries, and rules. It bears repeating that the static typing of the
AML metalanguage is independent of the typing of the CFTT object language which
happens via evaluation.

4.3.1 General programming

Syn-return
return (𝑣) 〜 val (𝑣)

Syn-op
perform(op, 𝑣) 〜 op(op, 𝑣,Unbounded, 𝑥.return (𝑥))

Chk-op
perform(op, 𝑣) @ B ✓ op(op, 𝑣,Boundary(B), 𝑥.return (𝑥))

Figure 4.8: Operational semantics of return and operations

By Syn-return in Figure 4.8, a value embedded via return (𝑣) synthesises the
result val (𝑣). We use the explicit val tag to distinguish computed values from
operations. Operations are neutral, and we thus give both a synthesis and a checking
rule. The result of performing an operation is, of course, an operation, which we tag
with op to distinguish them from values. The name of the operation and the argument
𝑣 are included in the result. Furthermore, Chk-op stores the boundary that is currently
being checked against as Boundary(B) for use in a runner handling op, while Syn-op
stores Unbounded. Operations propagate outwards by accumulating the continuation,
i.e. the rest of the computation that needs to be performed after the operation gets
handled. The base case, when an operation is performed, is to simply return whatever
result the handling runner computes, i.e. the continuation (𝑥.return (𝑥)).
Two computations 𝑐1, 𝑐2 can be sequenced via a let-binding (Fig. 4.9). If 𝑐1

produces a value 𝑣, the evaluation of let 𝑐1 = 𝑥 in 𝑐2 continues with 𝑐2 [𝑣/𝑥],
propagating the checking boundary if available (Chk-let-val). The case where 𝑐1

4.3. AML OPERATIONAL SEMANTICS 135

Syn-let-val
𝑐1 〜 val (𝑣) 𝑐2 [𝑣/𝑥] 〜 𝑟

let(𝑐1, 𝑥.𝑐2) 〜 𝑟

Syn-let-op
𝑐1 〜 op(op, 𝑣1, 𝑣2, 𝑦.𝑐𝜅)

let(𝑐1, 𝑥.𝑐2) 〜 op(op, 𝑣1, 𝑣2, 𝑦.let(𝑐𝜅 , 𝑥.𝑐2))

Chk-let-val
𝑐1 〜 val (𝑣) 𝑐2 [𝑣/𝑥] @ B ✓ 𝑟

let(𝑐1, 𝑥.𝑐2) @ B ✓ 𝑟

Chk-let-op
𝑐1 〜 op(op, 𝑣1, 𝑣2, 𝑦.𝑐𝜅)

let(𝑐1, 𝑥.𝑐2) @ B ✓ op(op, 𝑣1, 𝑣2, 𝑦.let(𝑐𝜅 , 𝑥.ascribe(𝑐2, B)))

Figure 4.9: Operational semantics of let binding

synthesises an operation is more interesting. The continuation 𝑦.𝑐𝜅 represents the rest
of 𝑐1 that is awaiting the result of handling op. In Syn-let-op, the continuation gets
extended to bind the result of 𝑐𝜅 to 𝑥 and subsequently continue with the evaluation
with 𝑐2 once the operation gets handled by a runner. In Chk-let-op, we furthermore
ascribe the current checking boundary to 𝑐2, which will ensure that it will in turn be
run in checking mode against B.
Evaluating a computation 𝑐 wrapped in a runner (Fig. 4.10) returns values

transparently (Syn-run-val,Chk-run-val), and checking propagates B to 𝑐. If the
runner 𝑣 does not have a clause for the particular operation raised, it is propagated
outward, but the continuation is re-wrapped with the 𝑣 (Syn-run-op-propagate). In
the case of Chk-run-op-propagate, the continuation is furthermore placed under
boundary ascription. When 𝑐 evaluates to an operation op and the handler 𝑣 has a
clause 𝑥.𝑦.𝑐op associated to op, the bubbling-up of op is stopped. The continuation 𝑐𝜅
expects the result of the runner to be bound to 𝑧. We hence evaluate a let statement
which binds to 𝑧 the value produced by the runner clause 𝑐op. Recall from Chk-op that
an operation which is performed in checking mode saves its checking boundary as
Boundary B_op, whereas Syn-op will produce Unbounded for 𝑣2. The runner clause
𝑐op is evaluated in synthesis mode if 𝑣2 = Unbounded. If 𝑣2 = Boundary B_op, the
operation was performed while checking against B_op, and accordingly 𝑐op is wrapped
with the boundary ascription as B_op in this case. The value produced by the runner
case is bound to 𝑧.
In analogy with the terminology employed for handlers, our runners can be said to

be deep and forwarding. Our runners are deep in the sense that the continuation 𝑐𝜅 is
wrapped again in the runner 𝑣 to handle further operations, and finally 𝑐𝜅 is resumed.
Our runners are forwarding: If no clause matching op is found, the operation keeps
propagating outward, which can be modelled by assuming each runner has an implicit
default clause that re-raises an operation its arguments unchanged.
The fact that a runner invokes its continuation exactly once means that one of

our motivating examples of effects, backtracking, is not expressible as a runner. On
the other hand, this very restriction allows us to install handlers at toplevel. A more

136 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Syn-run-val
𝑐 〜 val (𝑣)

with 𝑣 run 𝑐 〜 val (𝑣)

Chk-run-val
𝑐 @ B ✓ val (𝑣)

with 𝑣 run 𝑐 @ B ✓ val (𝑣)
Syn-run-op-propagate
𝑐 〜 op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅) ∀ case-op(op′, 𝑥.𝑦.𝑐op′) ∈ 𝑣, op′ ≠ op

with 𝑣 run 𝑐 〜 op(op, 𝑣1, 𝑣2, 𝑧.with 𝑣 run 𝑐𝜅)
Chk-run-op-propagate
𝑐 @ B ✓ op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅) ∀ case-op(op′, 𝑥.𝑦.𝑐op′) ∈ 𝑣, op′ ≠ op
with 𝑣 run 𝑐 @ B ✓ op(op, 𝑣1, 𝑣2, 𝑧.with 𝑣 run ascribe(𝑐𝜅 , B))

Syn-run-op-handle
𝑐 〜 op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅)

𝑣 = runner(. . . , case-op(op, 𝑥.𝑦.𝑐op), . . .)
let 𝑧 = match 𝑣2 with
| Unbounded→ 𝑐op [𝑣1/𝑥, 𝑣2/𝑦]
| Boundary ?B_op → 𝑐op [𝑣1/𝑥, 𝑣2/𝑦] as B_op

in with 𝑣 run 𝑐𝜅

〜 𝑟

with 𝑣 run 𝑐 〜 𝑟

Chk-run-op-handle
𝑐 @ B ✓ op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅)

𝑣 = runner(. . . , case-op(op, 𝑥.𝑦.𝑐op), . . .)
let 𝑧 = match 𝑣2 with
| Unbounded→ 𝑐op [𝑣1/𝑥, 𝑣2/𝑦]
| Boundary ?B_op → 𝑐op [𝑣1/𝑥, 𝑣2/𝑦] as B_op

in with 𝑣 run 𝑐𝜅

@ B ✓ 𝑟

with 𝑣 run 𝑐 @ B ✓ 𝑟

Figure 4.10: Operational semantics of runners

general mechanism such as full-blown effect handlers with first-class continuations
would have to explain the meaning of backtracking at toplevel.
The operational semantics of runners is reminiscent of that of exception handlers

or algebraic effect handlers. They behave virtually in the same way if the handled
computation evaluates to a value by returning the result. An operation behaves
differently from an exception in that it accumulates its continuation rather than
discarding it. The reader familiar with the presentation of runners in (Ahman and
Bauer 2019) may have noticed that in contrast to (Ahman and Bauer 2019), that the
runners here presented are not stateful. The addition of state would needlessly clutter
the presentation of the operational semantics and distract from the salient language
features of AML. The addition of state to AML is standard, and ML-style references
are in fact available in the Andromeda 2 implementation of AML.
The reader familiar with general handlers for algebraic effects may wonderWhy

not general handlers? There are several reason to prefer runners in our setup. General

4.3. AML OPERATIONAL SEMANTICS 137

handlers get access to the continuation of an operation as a first class value, and
can invoke their continuation any number of times. In our setting, the resumption
of the continuation is the last thing a runner does, and we can propagate checking
information through a (with v run c) form. A handler may change the return type of
an operation by wrapping the call to the continuation in a further computation, and
no sensible way of propagating checking information is possible. As runners invoke
their continuation exactly once, they can be implemented efficiently, without copying
the call stack (Bruggeman et al. 1996; K. Sivaramakrishnan et al. 2021). While there
is promising research on efficient implementations of general handlers, non-trivial
optimisations are required to achieve comparable results (Karachalias et al. 2021;
Schuster et al. 2020). Finally, the motivating example for runners in the context of
AML is the coerce operation, and we found that most handlers for coerce that we
implemented in Andromeda 1 (Bauer, Gilbert et al. 2018) were in fact expressible as
runners.

Syn-match
𝑣 ∼ 𝑝𝑖 ▷ 𝜎 𝑐𝑖 [𝜎] 〜 𝑟

match(𝑣, [𝑝1.𝑐1, . . . , 𝑝𝑛.𝑐𝑛]) 〜 𝑟

Syn-fun-apply
𝑐[𝑣/𝑥] 〜 𝑟

fun-apply(fun(𝑥.𝑐), 𝑣) 〜 𝑟

Chk-match
𝑣 ∼ 𝑝𝑖 ▷ 𝜎 𝑐𝑖 [𝜎] @ B ✓ 𝑟

match(𝑣, [𝑝1.𝑐1, . . . , 𝑝𝑛.𝑐𝑛]) @ B ✓ 𝑟

Chk-fun-apply
𝑐[𝑣/𝑥] @ B ✓ 𝑟

fun-apply(fun(𝑥.𝑐), 𝑣) @ B ✓ 𝑟

Figure 4.11: Operational semantics of case matching and function application

The evaluation of pattern matching (Fig. 4.11) proceeds by comparing the value
𝑣 with patterns 𝑝1 through 𝑝𝑛 until one of the patterns 𝑝𝑖 succeeds in producing a
substitution 𝜎. The rules for computing substitutions will be presented in Figure 4.17.
The substitution is applied to the associated computation 𝑐𝑖 , and the checking boundary
is propagated if available. Function application behaves similarly, propagating
information checking if available.

4.3.2 Type theory

The evaluation of type theoretic forms of AML closely follows the rules of context-free
type theories. The two rules in Figure 4.12 are particular to bidirectional evaluation.

Syn-Ascr
𝑐 @ B ✓ J

ascribe(𝑐, B) 〜 J
Chk-Syn

let x = 𝑐 in
let B = 𝜕x in
let b = B α

== B in
match b with
| true → return x
| false → (coerce x) as B

〜 𝑟

𝑐 @ B ✓ 𝑟

Figure 4.12: Operational semantics of ascription and mode-switch

138 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Ascription (Syn-Ascr) allows us to force the switch from inferring to checking
mode. Take for instance the first computation in let 𝑥 = 𝑐1 in 𝑐2. By Figure 4.9, 𝑐1
will be run in inference mode. If we want to use an available boundary B to guide the
evaluation of 𝑐1, we can use the boundary ascription let 𝑥 = 𝑐1 as B in 𝑐2.
The Chk-Syn rule is applied to evaluate an inferring computation 𝑐 in checking

mode. Many computations such as function application are neutral, and can be
used in either mode. If 𝑐 does not have a way of exploiting the available boundary
information, as is the case for instance when 𝑐 = return (𝑣), the computation is
inferred instead, and bound to x. If the checking boundary B is alpha-equal to inferred
boundary 𝜕 x the result is returned. If a mismatch is detected, coerce x will be
performed under boundary ascription B. In the bidirectional type system presented in
Figure 4.2, we saw how to confine conversion checking to the λCF-Chk-Syn rule. The
pseudo-AML rule pAML-Chk-Syn in Figure 4.3 already suggested the idea of using
an unspecified operation, without realising the technique of runners yet, to rectify
a boundary mismatch. The present Chk-Syn combines these ideas with operations
and runners, and allows us to implement runners handling coerce in the style of
coerce-to runners in Section 4.1.2. The integration with bidirectional typing allows
the evaluation of AML to trigger coerce automatically for the user at appropriate
times, and the presentation of coerce as operation allows the user to exploit local
information when handling a particular coercion problem.

Syn-tt-var
a𝐴 fresh

tt-var(𝐴 type) 〜 val (a𝐴 : 𝐴)

Syn-tt-abstr
𝑣1 = a𝐴 : 𝐴 𝑣2 = J or B a𝐴 ∉ fvt(𝑣2)
tt-abstr(𝑣1, 𝑣2) 〜 val ({𝑥:𝐴} 𝑣2 [𝑥/a𝐴])

Syn-tt-subst
𝑣 = J or B

tt-subst(({𝑥:𝐴} 𝑣), (𝑡 : 𝐴)) 〜 val (𝑣 [𝑡/𝑥])

Figure 4.13: Operational semantics of TT variables

We now arrive at the smart constructors for type theory. The treatment of type-
theoretic variables (Fig. 4.13) is straightforward. A fresh variable can be created at a
given (evaluated) type per Syn-tt-var, which ensures that judgements will always have
well-typed annotations (Def. 3.1.12). Abstraction is modelled after CF-Abstr-Fwd.
The side condition a𝐴 ∉ fvt(𝑣2) ensures that no other variable occurring in 𝑣2 can
depend on a𝐴. In presentations of type theory with contexts as lists this corresponds
to the restriction that only the last free variable can be bound. As context-free type
theories have no explicit context lists, we instead refer to the partial order induced
by dependency, similarly to the construction of suitable contexts in Section 3.3.1.
Admissibility of substitution is implemented via Syn-tt-subst.
One may wonder why all the type theoretic rules are inferring. Creation of a

4.3. AML OPERATIONAL SEMANTICS 139

variable, for instance, could reasonably be expected to be checking, which would
relieve the user from the requirement to explicitly provide the type. As we will see
in Section 4.4, many type theoretic derived forms can be defined to exploit checking
information for user convenience. AML is sufficiently expressive that these forms do
not need to be treated specially in the core language.

Syn-tt-mvar
MB fresh

tt-mvar(B) 〜 val (B ˆ︁MB)

Syn-tt-derived

𝑣1 = B ˆ︁MB 𝑣2 = J or B or (rule 𝑁 : B′ =⇒ 𝑣)
∀NB′ ∈ mv(𝑣2),NB′

= MB ∨ MB ∉ asm(B′) fv(𝑣2) = ∅
tt-derived(𝑣1, 𝑣2) 〜 val (rule 𝑀 : B =⇒ 𝑣2 [𝑀/MB])

Syn-tt-inst
𝑣 = J or B′ or (rule 𝑁 : B′ =⇒ 𝑣′)

tt-inst((rule 𝑀 : B =⇒ 𝑣),B 𝑒) 〜 val (𝑣 [𝑒/𝑀])

Syn-tt-congr

𝑣𝑙 = b S(𝑒1, . . . , 𝑒𝑛) , 𝑣𝑟 = b S(𝑒′1, . . . , 𝑒
′
𝑛)

or 𝑣𝑙 = b MB (𝑒1, . . . , 𝑒𝑛) , 𝑣𝑟 = b MB (𝑒′1, . . . , 𝑒
′
𝑛)

Apply the congruence rule for S / MB to premises 𝑣1, . . . , 𝑣𝑛 to obtain j,
checking that 𝑣1, . . . , 𝑣𝑛 are the correct premises (Def. 3.1.8, 3.1.10)

tt-congr(𝑣𝑙 , 𝑣𝑟 , 𝑣1, . . . , 𝑣𝑛) 〜 val (j)

Figure 4.14: Operational semantics of metavariables and congruence rules

The treatment of metavariables is very similar to that of variables (Fig. 4.14). Fresh
metavariables can be created from well-formed boundaries, and a metavariable can be
abstracted to form a derivable rule. The first argument to tt-derived(𝑣1, 𝑣2) must be
a metavariable (judgement), which gets abstracted in 𝑣2, creating a derived rule in the
sense of Definition 2.1.17. The abstraction of metavariables includes a side-condition
analogous to the abstractability condition for variables, saying that in order to abstract
MB, no other metavariable should depend on MB. A rule, whether primitive or
derivable, can be applied via Syn-tt-inst. As the application of rules proceeds one
premise at a time, the result of an instantiation is either a further (derivable) rule, a
judgement, or a boundary. Congruence rules do not need to be manually postulated.
Instead, tt-congr(𝑣𝑙, 𝑣𝑟 , 𝑣) computes the congruence rule associated to the head
symbol of 𝑣𝑙 and 𝑣𝑟 . If the arguments 𝑣 match the premises of the corresponding
context-free congruence rule, the judgement j which equates 𝑣𝑙 and 𝑣𝑟 is produced.
Two type theoretic values can be tested for syntactic equality via tt-alpha-equal.

Likewise, tt-erasure-equal provides a test for the equality after erasure of conversion
terms and assumption sets. Reflexivity of judgemental equality, for types and terms,
is implemented modulo erasure from context-free to finitary type theory, in keeping
with CF-EqTy-Refl and CF-EqTm-Refl. Conversion has to compute a suitable
assumption set. By Theorem 3.2.14, a derivable term judgement never needs to apply

140 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Syn-tt-alpha-equal

𝑏 =

{︄
true if 𝑣1 = 𝑣2 syntactically (per §3.1.1.4)
false otherwise

tt-alpha-equal(𝑣1, 𝑣2) 〜 val (𝑏)

Syn-tt-erasure-equal

𝑏 =

{︄
true if ⌊𝑣1⌋ = ⌊𝑣2⌋ syntactically (per §2.1.1.3)
false otherwise

tt-erasure-equal(𝑣1, 𝑣2) 〜 val (𝑏)

Syn-tt-refl

j =

{︄
𝐴1 ≡ 𝐴2 by {| |} if 𝑣1 = (𝐴1 type), 𝑣2 = (𝐴2 type), and ⌊𝐴1⌋ = ⌊𝐴2⌋

𝑡1 ≡ 𝑡2 : 𝐴 by {| |} if 𝑣1 = (𝑡1 : 𝐴), 𝑣2 = (𝑡2 : 𝐴), and ⌊𝑡1⌋ = ⌊𝑡2⌋
tt-refl(𝑣1, 𝑣2) 〜 val (j)

Syn-tt-convert-tm

(𝑡, 𝛾) =
{︄
(𝑠′, 𝛼 ∪ asm(𝐴) ∪ 𝛽 \ asm(𝑠′, 𝐵)) if 𝑠 = κ(𝑠′, 𝛽)

(𝑠, 𝛼 ∪ asm(𝐴) \ asm(𝑠, 𝐵)) otherwise
tt-convert((𝑠 : 𝐴), (𝐴 ≡ 𝐵 by 𝛼)) 〜 val (κ(𝑡, 𝛾) : 𝐵)

Syn-tt-convert-eqtm

(𝑠′, 𝛾) =
{︄
(𝑠′′, 𝛽 ∪ asm(𝐴) ∪ 𝜁 \ asm(𝑠′′, 𝐵)) if 𝑠 = κ(𝑠′′, 𝜁)

(𝑠, 𝛽 ∪ asm(𝐴) \ asm(𝑠, 𝐵)) otherwise

(𝑡 ′, 𝛿) =
{︄
(𝑡 ′′, 𝛽 ∪ asm(𝐴) ∪ 𝜉 \ asm(𝑡 ′′, 𝐵)) if 𝑡 = κ(𝑡 ′′, 𝜉)

(𝑡, 𝛽 ∪ asm(𝐴) \ asm(𝑡, 𝐵)) otherwise
tt-convert((𝑠 ≡ 𝑡 : 𝐴 by 𝛼), (𝐴 ≡ 𝐵 by 𝛽)) 〜 val (κ(𝑠′, 𝛾) ≡ κ(𝑡 ′, 𝛿) : 𝐵 by 𝛼)

Figure 4.15: Operational semantics of TT equality forms

conversion twice in a row. Successive conversions can be compressed by chaining the
successive type equations via transitivity. Therefore two cases are distinguished in
Syn-tt-convert-tm and Syn-tt-convert-eqtm. If the term to be converted is already
a conversion term, we strip the inner conversion tag and take the residual assumption
set into account while computing 𝛾. Otherwise, if the term is an applied symbol,
metavariable, or a variable, we leave it unchanged and compute 𝛾 accordingly. This
“optimisation” is not necessary from a type theoretic point of view, but it ensures that
the size of a term computed in AML is comparable to the size of its erased FTT term.
The constructors for boundaries (Fig. 4.16) are simply the translation of the

corresponding CFTT rules (Fig. 3.8) to AML. A given judgement can be projected to
its boundary via Syn-tt-bdry-of. This primitive realises Theorem 3.2.5, context free
presuppositivity.
Pattern matching is the AML implementation of context-free inversion, The-

orem 3.2.14. Inversion allows us to reconstruct the premises of a symbol rule. In
Pat-sym, each of the argument patterns 𝑝𝑖 is matched against the judgement obtained
by inverting 𝑣 and decomposing the head into the heads obtained from the premises.
By the inversion theorem, filling B𝑖 with the head 𝑒𝑖 is a derivable judgement, and
pattern matching can proceed on B𝑖 𝑒𝑖 . The boundaries B𝑖 are provided by the current

4.3. AML OPERATIONAL SEMANTICS 141

Syn-tt-bdry-ty

tt-bdry-ty 〜 val (□ type)

Syn-tt-bdry-tm

tt-bdry-tm(𝐴 type) 〜 val (□ : 𝐴)

Syn-tt-bdry-eqty
tt-bdry-eqty(𝐴 type, 𝐵 type) 〜 val (𝐴 ≡ 𝐵 by □)

Syn-tt-bdry-eqtm
tt-bdry-eqtm(𝐴 type, 𝑠 : 𝐴, 𝑡 : 𝐴) 〜 val (𝑠 ≡ 𝑡 : 𝐴 by □)

Syn-tt-bdry-of
J = B 𝑒

tt-bdry-of(J) 〜 val (B)

Figure 4.16: Operational semantics of TT boundaries

CFTT theory T which is implicitly passed on through evaluation of computations. We
require all variables occurring in patterns to be different from one another, and can
thus simply take the union of the substitutions obtained from recursive calls. The
pattern for metavariable application, Pat-mvar works much the same way, except
that the boundary is obtained from the annotation rather than by consulting T. The
second case of Theorem 3.2.14 treats the case where a conversion was required to
derive a term judgement at the given type, and is implemented in Pat-convert. The
first pattern is matched against the stripping of 𝑡 at its natural type, the second gives
access to the equation connecting the given type to the natural type, implementing
Lemma 3.2.13. The AML conversion rule Syn-tt-convert-tm compresses successive
conversions via transitivity. The stripping of the converted term against which 𝑝1
is matched can thus be obtained in a single step, i.e. s(𝑡) = 𝑡 ′ and r(𝑡) = 𝛼. The
boundary patterns, Pat-abstr, and Pat-rule are likewise justified by inversion.

4.3.3 Toplevel

We now turn our attention to the evaluation of programs, i.e. lists of toplevel commands
defined in Figure 4.18. We give a small step operational semantics for programs
working on a runner stack R, a CFTT theory T, and a list of top-commands cs. When
we defined the evaluation functions synth-comp and check-comp at the beginning of
this section, we mentioned that they pass the current theory T on to recursive calls,
and in Pat-sym we saw how T is used for the purposes of inversion, but we have yet to
discuss where T originates.
Evaluation of a program starts with the empty theory T0 = { }, and new rules

can be added via Top-rule. In order to maintain the invariant that T is a standard
context-free type theory (Def. 3.1.14), we have to ensure that there is exactly one rule
per symbol. This is taken care of by the first side condition. The derivability of the
boundaries B𝑖 and b is guaranteed by requiring 𝑣 to be a derivable rule boundary.
The rule command extends T with the economic rule 𝑣′ obtained by filling the rule
boundary 𝑣 with the symbol 𝑅 applied to the heads of the premises if b is an object
boundary, or with the appropriate assumption set in case b is an equation. Relying on

142 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Proposition 3.2.9 and Proposition 3.2.10, we use the economic rules, which leave out
the premise requiring the well-formedness of the boundary of the conclusion.
A toplevel let-binding is evaluated by wrapping 𝑐 in the current runner stack R,

evaluating it to a value 𝑣′, and substituting 𝑣′ in the rest of the top-commands.
A typing declaration for an operation has no operational meaning and is simply

skipped over during evaluation.
The runner stack is extended in Top-runner by appending 𝑣 as the innermost

runner that gets wrapped around an argument computation 𝑐.

4.3. AML OPERATIONAL SEMANTICS 143

Pat-var
𝑣 ∼ p-var(𝑥) ▷ {𝑥 ↦→ 𝑣}

Pat-ignore
𝑣 ∼ p-ignore ▷ {}

Pat-sym

𝑣 = b 𝑒 and 𝑒 = 𝑆(𝑒1, . . . , 𝑒𝑛)
T(𝑆) = (rule 𝑀1 : B1 =⇒ ... =⇒ rule 𝑀𝑛 : B𝑛 =⇒ j)

let 𝐼 = [MB1
1 ↦→𝑒1, . . . ,MB𝑛

𝑛 ↦→𝑒𝑛]
(𝐼 (𝑖)∗B𝑖 𝑒𝑖) ∼ 𝑝𝑖 ▷ 𝜎𝑖 for 𝑖 = 1, . . . , 𝑛

𝑣 ∼ p-sym(𝑆, 𝑝1, . . . , 𝑝𝑛) ▷ 𝜎1 ∪ . . . ∪ 𝜎𝑛

Pat-mvar

𝑣 = b 𝑒 and 𝑒 = MB (𝑡1, . . . , 𝑡𝑛)
B = {𝑥1 : 𝐴1} · · · {𝑥𝑛 : 𝐴𝑛} b′

b ˆ︁MB ∼ 𝑝𝑀 ▷ 𝜎𝑀 (𝑡𝑖 : 𝐴𝑖 [�⃗� (𝑖)/𝑥 (𝑖)]) ∼ 𝑝𝑖 ▷ 𝜎𝑖 for 𝑖 = 1, . . . , 𝑛
𝑣 ∼ p-mvar(𝑝𝑀 , 𝑝1, . . . , 𝑝𝑛) ▷ 𝜎𝑀 ∪ 𝜎1 ∪ . . . ∪ 𝜎𝑛

Pat-convert

𝑡 = κ(𝑡 ′, 𝛼)
(𝑡 ′ : 𝜏(𝑡)) ∼ 𝑝1 ▷ 𝜎1 (𝐴 ≡ 𝜏(𝑡) by 𝛼) ∼ 𝑝2 ▷ 𝜎2

(𝑡 : 𝐴) ∼ p-convert(𝑝1, 𝑝2) ▷ 𝜎1 ∪ 𝜎2

Pat-bdry-ty
(□ type) ∼ p-bdry-ty ▷ {}

Pat-bdry-tm
(𝐴 type) ∼ 𝑝 ▷ 𝜎

(□ : 𝐴) ∼ p-bdry-tm(𝑝) ▷ 𝜎

Pat-bdry-eqty
(𝐴 type) ∼ 𝑝1 ▷ 𝜎1 (𝐵 type) ∼ 𝑝2 ▷ 𝜎2

(𝐴 ≡ 𝐵 by □) ∼ p-bdry-eqty(𝑝1, 𝑝2) ▷ 𝜎1 ∪ 𝜎2

Pat-bdry-eqtm

(𝑠 : 𝐴) ∼ 𝑝1 ▷ 𝜎1
(𝑡 : 𝐴) ∼ 𝑝2 ▷ 𝜎2 (𝐴 type) ∼ 𝑝3 ▷ 𝜎3

(𝑠 ≡ 𝑡 : 𝐴 by □) ∼ p-bdry-eqtm(𝑝1, 𝑝2, 𝑝3) ▷ 𝜎1 ∪ 𝜎2 ∪ 𝜎3

Pat-abstr
(𝐴 type) ∼ 𝑝 ▷ 𝜎

({𝑥 : 𝐴} 𝑣) ∼ p-abstr(𝑝) ▷ 𝜎

Pat-rule
B ∼ 𝑝 ▷ 𝜎

(rule 𝑀 : B =⇒ 𝑣) ∼ p-rule(𝑝) ▷ 𝜎

Figure 4.17: Pattern matching

144 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Top-rule
𝑅 ∉ |T| 𝑣 = (rule 𝑀1 : B1 =⇒ ... =⇒ rule 𝑀𝑛 : B𝑛 =⇒ b)

let 𝑣′ be the economic rule associated to the rule boundary 𝑣 for 𝑅 (Def. 3.1.5, 3.1.6)
R,T | rule(𝑅, 𝑣) ; cmds −→ R,T ∪ {𝑅 ↦→ 𝑣′} | cmds[𝑣′/𝑅]

Top-let
R [𝑐] 〜 val (𝑣)

R,T | let(𝑥, 𝑐) ; cmds −→ R,T | cmds[𝑣/𝑥]

Top-operation

R,T | operation(op, op-mlsig) ; cmds −→ R,T | cmds

Top-runner
if R [𝑐] = with 𝑣1 run . . . with 𝑣𝑛 run 𝑐

let R ′[𝑐] = with 𝑣1 run . . . with 𝑣𝑛 run with 𝑣 run 𝑐
R,T | with(𝑣) ; cmds −→ R ′,T | cmds

Figure 4.18: Operational semantics of toplevel commands

4.4. STANDARD DERIVED FORMS 145

4.4 Standard derived forms

The purpose of AML as defined in Section 4.2 and Section 4.3 is to give a small
core language that can express the mechanisms that were empirically found to be
useful for working with context-free type theories in the Andromeda prover. In this
section we present a number of derived forms that offer further user convenience as
“syntactic sugar”3. Each derived form is given an equivalent form in AML. The latter
defines the meaning of the former and induces its operational semantics. In some
cases, we will illustrate the behaviour of the sugared syntax by describing its induced
operational semantics in the form of a rule. We will take the liberty to omit certain
cases, as the formal semantics is always the induced one. Some derived forms require
to set up a preamble with toplevel commands, such as operation declarations or rule
definitions. In such cases, it is understood that the preamble is only included once,
and the definition of the derived computation follows the preamble after a comment
line (* ---- *). As the derived syntax sometimes considerably reduces the amount
of code required to express an idea, we will use earlier derived forms in the definition
of later derived forms. This section will thus also serve us as a source of examples of
AML code.
Derived forms for boundary formation (Fig. 4.19) can beneficially use available

information to guide computations in checking mode via boundary ascriptions. The
derived form □ : 𝑐 for term boundaries for instance requires 𝑐 to evaluate to a type,
so we run 𝑐 under the constraint that it has to fill the boundary □ type. Substitution
requires its first argument to be an abstraction, and the second a term of matching type.
The derived form 𝑣{𝑐} recovers the type on the abstraction 𝑣 by pattern matching, and
runs 𝑐 with the resulting boundary ascription before performing the actual substitution
via tt-subst. Similarly, conversion of a term 𝑡 along an equality 𝑒 requires the type
of 𝑡 to match the left hand side of 𝑒.
The induced operational semantics (Fig. 4.20) of boundaries and substitution only

display the value case for all involved computations to avoid burdening the reader
with an exponential number of rules. They intuitively capture the expected checking
behaviour of boundary formation and substitution, but by presenting them as derived
forms we avoid having to consider operation cases for each sub-computation. Instead,
we rely on the behaviour of Syn-let-op if any of the let-bound computations performs
an operation. The evaluation of substitution is reminiscent of Bidi-App, the usual
application rule in bidirectional systems: to infer the type of an application, first infer
the function, then check the argument, finally construct the result type.
The previous examples of derived forms were all synthesising, with information

flowing internally to the construction, from one argument to another. Figure 4.21
demonstrates how to use operations and runners to define derived forms that can be
run in checking mode. Derived checking forms are defined with the help of operations,
as operations run in checking mode allow programs to access the current checking

3The terminology derived form is standard (Milner et al. 1990), but to avoid confusion with type
theoretic derivable rules we will use the term “sugared forms” when such confusion could arise.

146 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Derived form Equivalent form Meaning Mode

Derived computation 𝐶 ∋ 𝑐 ::=

□ : 𝑐
let x = 𝑐 as (□ type) in
tt-bdry-tm x term boundary 〜

𝑐1 ≡ 𝑐2 by □

let x = 𝑐1 as (□ type) in
let y = 𝑐2 as (□ type) in
tt-bdry-eqty x y

type eq. boundary 〜

𝑐1 ≡ 𝑐2 : 𝑐3 by □

let A = 𝑐3 as (□ type) in
let b-A = tt-bdry-tm A in
let z1 = 𝑐1 as b-A in
let z2 = 𝑐2 as b-A in
tt-bdry-eqtm z1 z2 A

term eq. boundary 〜

𝑣{𝑐}

match 𝑣 with {_ : ?A} _ →
let b-A = tt-bdry-tm A in
let y = 𝑐 as b-A in
tt-subst 𝑣 y

substitution 〜

convert-tm 𝑐 𝑣

let B = 𝜕𝑣 in
match B with ?A ≡ _ by □ →
let b-A = tt-bdry-tm A in
let x = 𝑐 as b-A in
tt-convert x 𝑣

conversion 〜

Figure 4.19: Syntax of derived boundary, substitution, and conversion computations

Syn-Bdry-Tm-val
𝑐 @ □ type ✓ val (𝐴 type)
□ : 𝑐 〜 val (□ : 𝐴)

Syn-Bdry-EqTy-val-val
𝑐1 @ □ type ✓ val (𝐴 type) 𝑐2 @ □ type ✓ val (𝐵 type)

𝑐1 ≡ 𝑐2 by □ 〜 val (𝐴 ≡ 𝐵 by □)

Syn-Bdry-EqTm-val-val-val
𝑐3 @ □ type ✓ val (𝐴 type)

𝑐1 @ □ : 𝐴 ✓ val (𝑠 : 𝐴) 𝑐2 @ □ : 𝐴 ✓ val (𝑡 : 𝐴)
𝑐1 ≡ 𝑐2 : 𝑐3 by □ 〜 val (𝑠 ≡ 𝑡 : 𝐴 by □)

Syn-Subst-val
𝑣 = B or 𝑣 = J 𝑐 @ □ : 𝐴 ✓ val (𝑡 : 𝐴)

({𝑥:𝐴} 𝑣){𝑐} 〜 val (𝑣 [𝑡/𝑥])

Figure 4.20: Induced operational semantics of boundaries and substitution

4.4. STANDARD DERIVED FORMS 147

Creation of a
fresh variable:

fresh

operation genfresh : unit → judgement
with runner genfresh () bdry_opt→

match bdry_opt with
| Boundary (□ : ?A) → tt-var A

end
(* ---- definition of fresh : ---- *)
genfresh ()

✓

Chk-fresh
a𝐴 fresh

fresh @ □ : 𝐴 ✓ val (a𝐴 : 𝐴)

Figure 4.21: Syntax and induced operational semantics of derived fresh computation

boundary. The derived form fresh creates a new variable with the help of a genfresh
operation. The runner for genfresh extracts the type from the checking boundary and
returns a new variable created via tt-var. After this preamble is set up, the form
fresh is defined as genfresh ().
The construction of abstractions in AML happens in a somewhat roundabout way:

a fresh variable has to be created and let-bound, a construction involving this variable
is performed and let-bound, and finally the variable is abstracted. AML provides the
necessary primitives to perform these steps, but the pattern is so common that we
provide additional syntactic sugar for it in Figure 4.22. Untyped abstraction, written as
{𝑥} 𝑐, is checking and propagates typing from the binder of the checking boundary to
the computation, using an auxiliary operation much like fresh did. Typed abstraction
{𝑥 : 𝑐1} 𝑐2 is our first example of a neutral derived form. It immediately triggers the
operation abstrT to see whether a checking boundary if present. In synthesis mode, it
simply creates a fresh variable at the provided type and synthesises 𝑐2. In checking
mode, the boundary is decomposed to read off the expected abstraction type A. As 𝑐2
expects a variable of type C, which was provided on the abstraction annotation as 𝑐1,
we try to ascribe the type C to a. If the two types coincide, the ascription will succeed,
otherwise a a coercion is performed. Finally we can run 𝑐2 in checking mode, further
propagating the information, and abstract the resulting value. The induced dynamic
behaviour is summarised in Figure 4.23.

4.4.1 Rule application and formation

The propagation of boundaries is particularly useful when dealing with rules specific
to a given type theory.
The derived form for rule application (Fig. 4.24) allows us to write several iterated

metavariable instantiations by juxtaposition. Typically 𝑐𝑅 is either a further rule
application or a rule. In this situation each of the subsequent rule applications in
𝑐𝑅 will in turn evaluate its argument in checking mode against the boundary of the
corresponding rule premise instantiated with the preceding arguments.

148 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Meaning:
Derived form Equivalent form Mode

Derived computation 𝐶 ∋ 𝑐 ::=

untyped abstr.:

{𝑥} 𝑐

operation abstrU
: (judgement→ judgement)→ judgement

with runner abstrU x_c bdry_opt→
match bdry_opt with
| Boundary ?B → match bdry with {_ : ?A} _ →
let a = tt-var A in
let z = (x_c a) as bdry{return a} in
tt-abstr a z

end
(* ---- definition of {x} c : ---- *)
abstrU (fun 𝑥 → 𝑐)

✓

typed abstr.:

{𝑥 : 𝑐1} 𝑐2

operation abstrT
: (unit→ judgement) ∗ (judgement→ judgement)
→ judgement

with runner abstrT (ty, body) bdry_opt→
let C = ty () as (□ type) in
match bdry_opt with
| Boundary ?bdry → (match bdry with {_ : ?A} _ →
let a = tt-var A in
let c = a as C in
let y = body c as bdry{return a} in
tt-abstr a y)

| Unbounded→
let c = tt-var C in
let y = body c in
tt-abstr c y

end
(* ---- definition of {x:c1} c2 : ---- *)
abstrT ((fun _→ 𝑐1), (fun 𝑥 → 𝑐2))

〜, ✓

Figure 4.22: Syntax of derived abstraction computations

4.4. STANDARD DERIVED FORMS 149

Chk-abstr-untyped
a𝐴 fresh 𝑐[(a𝐴 : 𝐴)/𝑥] @ B[a𝐴/𝑥] ✓ val (J)

({𝑥}𝑐) @ ({𝑥:𝐴} B) ✓ {𝑥:𝐴} J[𝑥/a𝐴]

Syn-abstr-typed
𝑐1 @ □ type ✓ val (𝐴 type)

a𝐴 fresh 𝑐2 [(a𝐴 : 𝐴)/𝑥] 〜 val (𝑣) 𝑣 = B or J

{𝑥:𝑐1} 𝑐2 〜 val ({𝑥:𝐴} 𝑣 [𝑥/a𝐴])

Chk-abstr-typed
𝑐1 @ □ type ✓ val (𝐶 type) a𝐴 fresh

(a𝐴 : 𝐵) @ □ : 𝐶 ✓ val (𝑡 : 𝐶) 𝑐2 [(𝑡 : 𝐶)/𝑥] @ B[a𝐴/𝑥] ✓ val (J)
({𝑥:𝑐1} 𝑐2) @ {𝑥:𝐴} B ✓ {𝑥:𝐴} J[𝑥/a𝐴]

Figure 4.23: Induced operational semantics of abstraction

𝑐𝑅 𝑐𝑎𝑟𝑔

let R = 𝑐𝑅 in
match R with rule (_ : ?bdry) _ →
let a = 𝑐𝑎𝑟𝑔 as bdry in
tt-inst R a

〜

Syn-TT-apply-val-val
𝑐𝑅 〜 val (rule (𝑀 : B) =⇒ 𝑣) 𝑐𝑎𝑟𝑔 @ B ✓ val (B 𝑒)

𝑐𝑅 𝑐𝑎𝑟𝑔 〜 val (𝑣 [𝑒/𝑀])

Figure 4.24: Syntax and induced operational semantics of rule application

derive(𝑀 : 𝑐bdry) 𝑐

let bdry = 𝑐bdry in
let 𝑀 = tt-mvar bdry in
let x = c in
tt-derived 𝑀 x

〜

Syn-derivable-rule-val-val
𝑐bdry 〜 val (B) MB fresh 𝑐[B ˆ︁MB /𝑀] 〜 val (𝑣)
derive(𝑀 : 𝑐bdry) 𝑐 〜 val (rule 𝑀 : B =⇒ 𝑣 [𝑀/MB])

Figure 4.25: Syntax and induced operational semantics of derivable rules

150 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

Formation of derivable rules (Fig. 4.25) is similar to the synthesis of a typed
abstraction, coupling the creation and abstraction of metavariables.

4.4.2 Handling syntactic equality

The presence of conversion terms κ(𝑠, 𝛼) in context-free type theories causes syn-
tactic equality to be a slightly stricter notion than syntactic equality of finitary type
theories. Lemma 3.2.17 allows us to use modify the head of a judgement J to fit a
prescribed boundary B, so long as the boundary of J matches B up to erasure. The
AML code in Appendix A implements Lemma 3.2.17 as boundary-convert4, and
installs a corresponding toplevel runner boundary-converter. The derived forms for
substitution, conversion, and boundary formation all run their arguments with suitable
ascriptions so that a boundary mismatch will trigger a coercion that can be handled by
boundary-converter. This fully relieves the user of the burden of manually having
to adjust conversion terms, and allows us to work transparently as if we were using
finitary type theory.

4.4.3 Recovering λCF-Lambda

In the introduction to bidirectional typing (§4.1.1), we encountered the bidirectional
typing and elaboration rules for lambda abstraction, Bidi-Lambda and λCF-Lambda,
which we recall here.

Bidi-Lambda
Γ, 𝑥:𝐴 ⊢ 𝑏 ⇐ 𝐵

Γ ⊢ λ(𝑥.𝑏) ⇐ Π(𝑥:𝐴.𝐵)

λCF-Lambda
a𝐴 fresh ⊢ 𝑏[a𝐴/𝑥] ⇐ 𝐵[a𝐴/𝑥] ≫ 𝑏′ : 𝐵[a𝐴/𝑥]

⊢ λ(𝑥.𝑏) ⇐ Π(𝑥:𝐴.𝐵) ≫ λ(𝑥:𝐴.𝑏′) : Π(𝑥:𝐴.𝐵)

To represent dependent products and lambda in AML, we first have to declare the
corresponding rules, displayed in Figure 4.26. We can then recover the checking
behaviour of Bidi-Lambda in a couple of lines of AML code. We follow the by-now-
familiar recipe of using an operation to access the checking boundary, providing the
body of the lambda wrapped in a closure as argument. Once the boundary Π-type is
deconstructed, we use the derived for rule application (Fig. 4.24) to apply the λ rule to
arguments A, absB, and clos (). This will run all arguments in checking mode. In
particular, the closure containing the body of the lambda will be evaluated in checking
mode against the correct boundary. Following the recipe laid out by Bidi-Lambda we
thus recover the elaboration behaviour of λCF-Lambda for free as AML evaluates
lambda𝑐𝑏 to the fully annotated judgement.

4The implementation uses let rec, which can easily be defined formally in AML, and is available
in the Andromeda 2 implementation of AML.

4.5. ON SOUNDNESS & COMPLETENESS 151

lambda(𝑐𝑏)

let pi-rule-boundary =
derive (A : □ type)
derive (B : {x : return A} □ type)
□ type

rule Π pi-rule-boundary

let lambda-rule-boundary =
derive (A : □ type)
derive (B : {x : return A} □ type)
□ : Π (return A) (return B)

rule λ lambda-rule-boundary

operation lam-chk : (unit → judgement)→ judgement
with runner lam-chk clos bdry_opt→
match bdry_opt with Boundary (□ : Π(?A, ?absB)) →
(return λ) (return A) (return absB) (clos ())

end
(* ---- definition of lambda(𝑐𝑏) : ---- *)
lam-chk (fun _→ 𝑐𝑏)

✓

Chk-Lambda-val
𝑐𝑏 @ {𝑥:𝐴} □ : 𝐵 ✓ {𝑥:𝐴} 𝑏 : 𝐵

lambda(𝑐𝑏) @ Π(𝐴, {𝑥}𝐵) ✓ λ(𝐴, {𝑥}𝐵, {𝑥}𝑏) : Π(𝐴, {𝑥}𝐵)

Figure 4.26: Syntax and induced operational semantics of checking lambda

4.5 On soundness & completeness
AML is conceived as a metalanguage for the development of context-free type
theories. The operational semantics implicitly assume an abstract implementation
of the infrastructure of context-free type theories, such as a datatype for syntax,
judgements, rules et cetera. If such an implementation is provided via a nucleus, can
we then say that in good faith that judgements produced by AML are context-free
judgements? Such a statement amounts to a soundness theorem for AML with respect
to derivable context-free judgements. A vacuous way to achieve soundness is to
implement the empty language, that does nothing. While this is clearly not the case for
AML, it indicates that besides soundness, we also want a guarantee of completeness
with respect to derivable context-free judgements. In this section, we give a brief
sketch of soundness and completeness of AML for context-free type theories.

Claim 4.5.1 (AML Soundness). Let T be a standard context-free type theory. If
T | 𝑐 〜 val (J), then ⊢ J is derivable in T.

A proof of this claim would proceed by an appropriate computational induction
(Pretnar 2010) for operations and runners over the AML evaluation relation. We would
have to generalise the statement to roughly state that judgement and boundary values
are derivable, and for an operation op(op, 𝑣1, 𝑣2, 𝑥.𝑐𝜅), 𝑣1 and 𝑣2 are derivable, and

152 CHAPTER 4. AN EFFECTFUL METALANGUAGE FOR TYPE THEORIES

for any derivable value 𝑣, 𝑐𝜅 [𝑣/𝑥] evaluates to a derivable value, where we extend the
notion of derivability to other values in the obvious way.

Claim 4.5.2 (AML Completeness). Given a standard context-free type theory T, if J
has well-typed annotations and ⊢T J, then there exists an AML program 𝑐 such that
T | 𝑐 〜 val (J′) and ⌊J⌋ = ⌊J′⌋.

We would prove this statement by hoisting out the free (meta-) variables occurring
in J into let-bindings while respecting their dependency order, using the evidence
provided by the well-typed annotations to create variables via tt-var, and constructing
the AML program by induction over the typing derivation of J. The reason we can
only recover J up to erasure is that the conversion rule of AML applies transitivity on
the fly in order to compress successive conversions.
We expect the proof of soundness to be a standard application of proof techniques

for algebraic effects and handlers (Pretnar 2010; Bauer and Pretnar 2014; Ahman
and Bauer 2019; Lukšič 2020), and the proof of completeness to be straightforward.
Detailed proofs of both claims are left as future work.

4.6 AML in Andromeda 2
The Andromeda 2 prover (Bauer, Haselwarter and Petković Komel 2021) is an
implementation of a variant of AML. The nucleus, which provides the interface for the
evaluation of the type theoretic smart constructors, is written in 3000 lines of OCaml
code, which closely corresponds to the rules of context-free type theories. The exact
implementation of the nucleus is best appreciated by consulting the source code5.
Essentially, it amounts to a transcription of the datatypes, functions, and algorithms
corresponding to the proofs of Chapter 3. As the syntax for context-free type theories
is rather verbose compared to that of finitary type theories, Andromeda 2 applies the
cf-to-tt erasure of judgements and reconstruction of a suitable context on the fly when
printing a type theoretic value.
Andromeda 2 extends core AML with user definable data types, general recursive

definitions, references, and exceptions. It comes equipped with Hindley-Milner style
static type system helps the user avoid programming errors, and represents values
constructed by the nucleus as the abstract types of judgements, boundaries, and rules.
The surface language syntax resembles that of AML with the standard derived forms,
but is more permissive in places, allowing the application of functions to computations
and similar standard relaxations of syntax for fine-grained call-by-value.
Andromeda 2 evolved from Andromeda 1, an experimental implementation of

extensional type theory with algebraic effects and handlers. We draw a more detailed
comparison in Section 5.1.2.
An example of a formalisation using Andromeda 2 is included in Appendix B.

Further examples, such as a definition of the calculus of constructions can be found in
the theories/ subfolder of the Andromeda source code.

5https://github.com/Andromedans/andromeda

https://github.com/Andromedans/andromeda/tree/master/theories
https://github.com/Andromedans/andromeda

The Andromeda galaxy, M31. Source: NASA.

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA04921

Chapter 5

Conclusion

Our quest for an effective metatheory for type theory has lead us to present and
study three languages. In Chapter 2, we gave a general definition of a broad class of
finitary type theories and proven that it satisfies the expected desirable type theoretic
metatheorems. In Chapter 3, we introduced a context-free formulation of type
theories and demonstrated that this definition satisfies further metatheorems that were
previously lost, notably strengthening and good inversion principles. Context-free type
theories were defined with an eye towards implementation, as the annotation discipline
for variables allows for the use of an effectful metalanguage. In Chapter 4 we saw
the Andromeda metalanguage, an effectful language with bidirectional evaluation for
context-free type theories.

5.1 Related work

We will now discuss work related to finitary type theories and to AML, as the related
work for context free type theories, most importantly (Geuvers et al. 2010), has been
addressed in Chapter 3.

5.1.1 Finitary type theories

Finitary type theories (FTT) were developed concurrently with several other general
frameworks for type theory. There are different approaches to the study of formal
systems such as logics and type theories, ranging from syntactic (Cartmell 1978;
Harper, Honsell et al. 1993) to semantic (Fiore and Mahmoud 2014; Isaev 2016)
characterisations. To reasonably delimit the scope of this discussion we shall focus on
those that (i) are sufficiently expressive to faithfully represent type theories, and (ii)
are sufficiently restrictive to provide useful expected results about type theories.

General dependent type theories The closest relative are general dependent type
theories (Bauer, Haselwarter and Lumsdaine 2020), which we proposed together with
Bauer and Lumsdaine. Finitary and general dependent type theories (GDTT) have

155

156 CHAPTER 5. CONCLUSION

more in common than divides them. FTT can be seen as a bridge from GDTT to
context-free type theories (CFTT). As context-free type theories in turn are intended
as the theoretical underpinning of AML, the choice was made to restrict arities of
rules and symbols to be finite, which allows for a direct representation as syntax.
An arity of a symbol or a rule in GDTT on the other hand can be indexed by an
arbitrary set (or type, actually). The finitary restriction is thus somewhat coincidental,
and we expect that it should be possible to generalise much of the treatment of FTT
and possibly CFTT to arbitrary arities. The treatment of variables in FTT follows a
locally-nameless discipline, while GDTT uses shape systems both for free and bound
variables. Metavariables represent a separate syntactic category in FTT while they
are treated as particularly simple symbols in GDTT. The GDTT approach offers a
streamlined theoretical development, as the same specific and congruence rules are
used both for symbols and metavariables, and can be viewed as providing a semantic
account of FTT’s metavariable contexts as theory extensions. The rôle of metavariables
in proof assistants however is rather distinct from that of rules, and we chose not to
conflate the two in FTT. Finally, the levels of well-formedness of the two formalisms
are different. GDTT places fewer restrictions on the rules of raw type theories, while
a raw FTT already satisfies presuppositivity.

Logical frameworks Perhaps the most prominent family of systems for representing
logics are logical frameworks (Harper, Honsell et al. 1993; Pfenning 2001). Logical
frameworks have spawned a remarkably fruitful line of work (Cervesato and Pfenning
2002; Watkins et al. 2003; Cousineau and Dowek 2007) and several implementations
exist (Pfenning and Schürmann 1999; Pientka and Dunfield 2010), and have been used
to study the metatheory of deductive systems and programming languages (Dunfield
2014; Pientka 2015). In concurrent work to the development of GDTTs and FTTs,
Uemura (Uemura 2019) and Harper (Harper 2021) recently proposed frameworks with
the purpose of representing type theories. We will thus focus on these two systems.
Both Uemura’s LF (ULF for short), and Harper’s Equational LF (henceforth EqLF)

extend previous frameworks by the addition of an equality type satisfying reflection
to judgemental equality at the framework level, and Uemura includes a substantial
development of a general categorical semantics. Uemura’s account of type theory can
be compared to FTT along several axes. In one way, ULF is more expressive than FTT.
While FTT allows only one judgement form for types, terms, and their equalities, ULF
can capture theories with different judgement forms, such as the fibrancy judgement of
the homotopy type system or two-level type theory (Voevodsky 2013; Annenkov et al.
2019), or the face formulas of cubical type theory (Cohen et al. 2016). While it may be
possible to reconstruct some type theories expressible in ULF via the use of universes
in FTT, a careful analysis would be required to show that the account is faithful, for
instance by showing that it is sound and complete for derivability. Conversely, every
standard finitary type theory is expressible in ULF. The translation is straightforward,
and we take this as a sign that both ULF and FTT achieve their goal of giving a
“natural” account of type theory.

5.1. RELATED WORK 157

Raw finitary type theories on the other hand are not directly expressible in ULF
or in EqLF. Frequently, accounts of type theory present rules that are not standard,
most often because a symbol does not record all of the metavariables introduced by its
premises as arguments. But it is also standard practice to have only one notation for say
dependent products which may occur at more than one sort, as is done in (Martin-Löf
1982; Harper 2021), or give a general cumulativity rule allowing the silent inclusion of
types from one sort into another (Luo 1990; Uemura 2019). One may of course take
the view that such presentations are not really type theories and should be read with
full annotations inserted. It is usually understood that such an annotated presentation
can be given, and by including the right set of equations the original calculus can be
recovered (Harper and Pollack 1991). Proofs that an unannotated theory is equivalent
to a fully annotated one are hard labour (Streicher 1991, Theorem 4.13). Finitary type
theories can thus serve to study the elaboration of such unannotated to a standard FTT
or ULF presentation. One such useful general result can already be found in (Bauer,
Haselwarter and Lumsdaine 2020), where it is shown that every raw type theory,
possibly containing cyclic dependencies between rules, is equivalent to a well-founded
one. The assumption of well-founded stratification is hardwired in ULF through the
definition of a signature and in EqLF trough the inductive construction of a context
serving as signature, so that such a theorem could not even be stated in ULF or EqLF.
An alternative perspective is offered by the observation that Harper’s Equational

LF almost forms a standard finitary type theory. In Appendix B.1 we suggest a
standard CFTT presentation of EqLF that we formalised in Andromeda 2. As an
implementation of standard type theories, Andromeda 2 is well suited for working
with a type theory with equality reflection such as EqLF. Appendix B.2 develops
most of the examples from (Harper 2021), and with a few simple local definitions and
runners we can transcribe the examples almost verbatim.
In our opinion, an open ended concept such as type theory can only benefit from

the fact that several formalisms have been proposed. We do not intend the definitions
proposed in this thesis to be definitive or prescriptive. Finitary type theories are
well-suited for our needs, and we hope that other practitioners of type theory too can
find them useful.

5.1.2 Andromeda metalanguage

The landscape of proof assistants based on type theory is vast (Constable et al. 1986;
The Coq development team 2021a; Norell 2009; de Moura et al. 2015; The Isabelle
development team 2016), and all of these systems include a form of vernacular in
which proofs can be developed rather than forcing the user to write plain terms in type
theory. AML has three distinguishing characteristics along which we can compare it
to other languages: it features user-definable effects, it supports user-definable type
theories, and it employs bidirectional evaluation.

Effectful metalanguages, direct style The original metalanguage of Edinburgh LCF
(Gordon, Milner, Morris et al. 1978), namesake of the ML family of programming

158 CHAPTER 5. CONCLUSION

languages, featured several effects natively, notably state and exceptions (“escape and
escape trapping”, (Gordon, Milner and Wadsworth 1979)). ML languages have since
been extended with further effects, such as support for concurrency (Reppy 1991) or
first-class continuations (Harper, Duba et al. 1993). Likewise, most modern proof
assistants come with such a fixed set of effects built into their metalanguage. The
Coq proof assistant (The Coq development team 2021a) implements a variant of the
calculus of inductive constructions (The Coq development team 2021c). It is written
in OCaml (Leroy et al. 2021), and can be extended via plug-ins. OCaml is itself a
descendant of ML, and has built-in support for a number of effects which can be used
when programming plug-ins. Modifying a prover’s implementation language however
constitutes a high hurdle, and is not expected of regular users of the system, as can be
seen from the fact that the manual does not explain how to do so. Recent work on
OCaml aims to bring user-definable algebraic effects and handlers to the language
(K. Sivaramakrishnan et al. 2021), which could in principle be used in plugins. We
are not aware of any work in this direction. Ultimately, OCaml remains a low-level
language from the point of view of proof development and offers the user little support.
More commonly, users interact with Coq through one of its tactic languages, which in
turn rely on the core tactic engine (Spiwack 2010). The tactic engine provides access
to the current proof state, the proof view, during the refinement of a partial term,
and supports backtracking for proof search. Ltac (Delahaye 2000) is Coq’s de facto
standard tactic language. It comes with built-in support for backtracking, and allows
for easier proof development than working in bare OCaml. ButLtac fares rather poorly
in terms of language design compared to members of the ML family, due to its lack of
a formal semantics or static type system. While the presentation of AML in Chapter 4
does not include the discussion of a type system, the Andromeda 2 implementation
does feature a static Hindley-Milner style type system ruling out certain programming
errors that sometimes plagueLtac scripts. The available effects inLtac are very limited.
Stateful tactics for instance have to be programmed in OCaml, and the backtracking
behaviour can have undesirable consequences.
Ltac2 (Pédrot 2019) is a member of the ML family that amends many of these

shortcomings, and is poised to eventually succeedLtac. It features a carefully chosen
selection of effects useful for proof development, such as manipulating Coq’s proof
state, IO, mutable state, backtracking, and exceptions. Ltac2 is a closer relative to
AML, but the selection of effects remains predetermined. But it is built on a firmer
foundation than its predecessor, and an extension to runners could be possible, but
their interaction with the built-in proof view would have to be carefully considered.

Effectful metalanguages, monadically Yet a different approach is taken by Mtac2
(Kaiser et al. 2018), which instead provides a reflection of Coq’s type theory into
a monad for meta-programming. The main benefit that Mtac2 provides is thus an
expressive type system that can be used to ensure the correctness of Mtac2 tactics. The
monad itself is rather limited from the point of view of effectful programming though,
allowing only unbounded recursion and exceptions, while manipulation of the proof

5.1. RELATED WORK 159

view is limited. In principle other effects could be presented monadically in Mtac2,
but the difficulty of combining monadic effects was one of the original motivations for
the adoption of algebraic effects in their stead (Bauer and Pretnar 2015).
Similar mechanisms for reflection-based monadic meta-programming exist in

Agda (van der Walt and Swierstra 2013), Idris (Christiansen and Brady 2016), and
Lean (Ebner et al. 2017). The Lean implementation of reflection exposes full
access to the proof state, and comes with a library of further predefined standard
monads. Approaches based on monadic reflection can be both powerful and efficiently
implemented, but suffer from the aforementioned lack of modularity regarding the
combination of effects. It is also worth noting that this approach presupposes that
the type theory which the reflection targets is a essentially a dependently typed
programming language with a well-behaved notion of computation, which need not
apply to finitary type theories in general.

User-definable theories We can further compare provers with an eye to the second
distinguishing feature of AML, its support for user-definable type theories. There
are roughly two categories we can draw. On the one hand, there are provers based
on a specific type theory that allow certain extensions. The extension of judgemental
equality with rewriting rules has been implemented in Agda and proposed for Coq
(Cockx, Tabareau et al. 2020). This mechanism allows the addition of new computation
rules and can make it practical to work with axiomatic extensions of type theory that
would otherwise interact badly with equality checking. On the other hand, the method
is not suited to handle for instance equality reflection or extensionality principles,
which can be added to AML by providing suitable runners (Bauer, Gilbert et al.
2018; Bauer, Haselwarter and Petković 2020; Bauer and Petković Komel 2021).
Furthermore, the method can only extend an existing calculus, defining a different
theory, say Martin-Löf type theory without an impredicative universe in Coq, is not
possible.
On the other hand, we can consider fully generic provers that allow the user to

define their own theory. As we mentioned before, logical frameworks were introduced
with the purpose of representing deductive systems. Existing tools based on LF
(Pfenning and Schürmann 1999; Pientka and Dunfield 2010) do not, to the best of our
knowledge, allow the user to postulate new judgemental equalities. Instead, the equality
judgement of the object theory is represented as a type, following the “judgements
as types” idea. This ensures that terms in LF correspond to derivations in the object
theory, and permits the metatheoretic analysis of the object theory by conducting
proofs by induction over the derivations. The Dedukti proof checker (Assaf et al. n.d.)
constitutes an exception to this rule. Based on λΠ-modulo (Cousineau and Dowek
2007), it allows to postulate certain equations in the form of rewriting rules. Unlike
Twelf or Beluga its purpose is not the study of metatheory but rather the independent
re-checking of proofs exported from another prover to an embedding of its theory
into λΠ-modulo. The same remarks about the limitations regarding rewriting in Agda
or Coq apply. In contrast, the goal of AML is the construction of judgements in the

160 CHAPTER 5. CONCLUSION

object theory rather than its metatheoretic study or their mere re-checking. AML may,
however, constitute a suitable metalanguage for equational logical frameworks, and
we included a first step into this direction in Appendix B.

Bidirectionalism Bidirectional evaluation is, to the best of our knowledge, a novel
contribution of this thesis. A related idea is bidirectional elaboration, pioneered
by Saïbi for implementation in Coq (Saïbi 1997) and further developed for Matita
(Asperti et al. 2012), which turns incomplete input terms, possibly containing unsolved
metavariables, into fully annotated terms. The algorithm in (Asperti et al. 2012)
tackles bidirectional elaboration for the full calculus of (co-) inductive constructions.
As the algorithm is tailored carefully to the type theory at hand, it can perform a
more complete reconstruction than a naïve presentation of the same theory in AML
could. In comparison, AML makes no assumptions about the type theory, but allows
arbitrary computations as the input language to bidirectional evaluation. This enables
the construction of bidirectional computations as derived forms as we have seen in
Section 4.4.3.

Andromeda 1 Finally we should mention our own work related to AML. The
first incarnation of Andromeda (Bauer, Gilbert et al. 2018) was based on a similar
ML-like language. Both the type theory and the metalanguage have undergone some
changes in the second version. Andromeda 1 was based on a fixed extensional type
theory with the inconsistent but (in terms of universe management) convenient rule
Type : Type. In (Bauer, Gilbert et al. 2018), the convenience of extensional type
theory as a logical framework is very visible. Rather than replacing the rule with a
particular fixed system of universes, we were lead to develop finitary type theories.
The representation of variables in the Andromeda 1 variant of extensional type theory
is halfway between that of finitary and context-free type theories. It features (untyped)
assumption sets, recovering strengthening, but still represents judgements with explicit
contexts. In order to enable forward reasoning, contexts were stored as acyclic graphs
rather than lists. Contexts were endowed with a join operation, combining contexts
with compatible dependency structures. The context-free presentation is slicker in
this respect, as it never requires explicit manipulation of contexts, which are left
implicit in the dependency order induced by the assumption sets in a judgement.
The Andromeda metalanguage has retained many of its characteristics such as the
implementation of inversion principles through pattern matching and the automatic
dispatch of coercion operations in the Chk-Syn rule. Andromeda 1 featured arbitrary
handlers instead of runners. As discussed in Section 4.3.1, we found runners to be
more suitable for our purposes, and the examples of (Bauer, Gilbert et al. 2018) remain
expressible in the new setting. In a line of work we initiated jointly with Bauer and
Petković and brought to completion by Bauer and Petković, the equality checking
algorithm from Andromeda 1 has undergone a substantial generalisation to finitary
type theories (Bauer, Haselwarter and Petković 2020; Bauer and Petković Komel

5.2. FUTURE WORK 161

2021). Its extensible design allows familiar type theories to be used without overhead
in Andromeda 2.

5.2 Future work

Finitary and context-free type theories The recent emergence of several general
definitions of type theories offers an opportunity for further study. Many definitions
of open-ended mathematical concepts such as the concept of a space can coexist, and
contemporary research in mathematics continues to propose new perspectives (Anel
and Catren 2021; Scholze 2019). Mathematics teaches us that we should embrace
this pluralism. New definitions are usually introduced with a purpose in mind, and
using them within that context is a natural direction for further work. Finitary type
theories are used in ongoing research regarding the connection of raw and standard
type theories (Petković Komel 2021). To avoid that pluralism leads to fragmentation,
we also have to take the step of clarifying the connection of a new definition to other
definitions of the same concept. The first step for finitary type theories should be a
crisp theorem relating them to general dependent type theories (Bauer, Haselwarter
and Lumsdaine 2020), their closest kin. As mentioned in Section 5.1.1, the logical
framework of Uemura (Uemura 2019) is more liberal in the class of theories that can
express than standard finitary type theories, but more restrictive in what it accepts
compared to raw type theories. It would be useful to prove a general adequacy theorem
of Uemura’s or Harper’s (Harper 2021) logical framework for finitary type theories.
Conversely, the extension of finitary and context-free type theories to other judgement
forms in the style of Uemura’s LF seems within reach and would allow the expression
of new type theories such as those based on cubical sets (Cohen et al. 2016; Angiuli
et al. 2018; Cavallo et al. 2020). Another active domain of current research are modal
type theories (Schreiber andMichael Shulman 2014; Birkedal et al. 2021). Multimodal
type theory does not readily fit into our setup or the framework of Uemura (Gratzer
2021), and the development of modal finitary type theories is an exciting possibility
for further work.

Andromeda metalanguage Programming languages, much like type theories, are
a multifaceted concept. With the definition of AML in hand, we can pursue its
theoretical study, analyse its relation to other languages, and of course consider further
extensions. The obvious first step that should be taken is the proof of the soundness and
completeness theorems for AMLwith respect to standard context-free type theories. As
mentioned in Section 4.5, we expect that standard proof techniques for languages with
algebraic effects should apply (Lukšič 2020). The mathematical theory of algebraic
effects and handlers, and operations and runners, importantly includes equations
that operations should satisfy (Plotkin and Pretnar 2013). Until recently (Lukšič
2020), programming languages for effects have mostly ignored equations, despite
the well-known potential of optimisations based on effect theories (Kammar 2014).
The equations respected by an effect theory on a set of operations depends of course

162 CHAPTER 5. CONCLUSION

on the intended interpretation of the generators. We can consider, for instance, the
theory obtained by interpreting the coerce(J, B) operation as conversion to recover
the traditional bidirectional conversion rule from Chk-Syn. Under this assumption,
we would expect the equations

coerce(𝑠 : 𝐴, □ : 𝐴) = return(𝑠 : 𝐴)
coerce(𝑠 : 𝐴, □ : 𝐵) = coerce(𝑠 : 𝐵, □ : 𝐴)

coerce(coerce(𝑠 : 𝐴, □ : 𝐵), □ : 𝐶) = coerce(𝑠 : 𝐴, □ : 𝐶)

to hold for all type theories by reflexivity, symmetry, and transitivity of judgemental
equality.
Translating AML to an exist language with support for effects and handlers

(Kiselyov and K. C. Sivaramakrishnan 2018) could open up a path to an efficient
execution of AML programs. The current implementation of AML in Andromeda 2
interprets the code, and while this is suitable for experiments we do not expect it to scale
to serious proof development. For example, multicore OCaml (K. Sivaramakrishnan
et al. 2021) and web assembly with delimited continuation (Pinckney et al. 2020) are
sufficiently expressive to implement runners.
The restriction that a runner must use its continuation once, in tail position, has

the advantage that runners can be used at toplevel, while general handlers cannot. But
it also rules out one of the motivating examples for handlers, namely implementing
backtracking. We plan to investigate the addition of local, i.e. non top-level, effect
handlers to AML. It remains to be seen if general handlers interact as nicely with
bidirectional evaluation as runners do.
The possible extensions of finitary and context free type theories discussed in

Section 5.2 would be natural candidates for further extensions of AML. But until the
theoretical ground work is laid, the combination of an implementation of modal type
theory (Gratzer et al. 2019) with AML remains in the realm of speculation. Beyond
the borders of Andromeda, we believe that AML could beneficially be used in other
proof assistants. We mentioned the development of Ltac2 in Section 5.1.2 in the
context of Coq. The AML definition is modular in terms of its expectations towards
the object type theory, and one could imagine the combination of AML with other
nuclei implementing different type theories.

Appendix A

AML implementation of the
boundary conversion lemma

This section contains the AML implementation of Lemma 3.2.17. As the proof of
Lemma 3.2.17 relies on transitivity of judgemental equality, we include the definition
of rules corresponding to CF-EqTy-Trans and CF-EqTm-Trans.

let eqty-trans-bdry =
derive (A : return (□ type))
derive (B : return (□ type))
derive (C : return (□ type))
derive (eqAB : return (A ≡ B by □))
derive (eqBC : return (B ≡ C by □))
A ≡ C by □

rule EqTy-Trans = eqty-trans-bdry

let eqtm-trans-bdry =
derive (A : return (□ type))
derive (t1 : (□ : (return A)))
derive (t2 : (□ : (return A)))
derive (t3 : (□ : (return A)))
derive (eq12 : return (t1 ≡ t2 : A by □))
derive (eq23 : return (t2 ≡ t3 : A by □))
t1 ≡ t3 : A by □

rule EqTm-Trans = eqtm-trans-bdry

let eqtm-trans eq1 eq2 =
let b1 = 𝜕 eq1 in
let b2 = 𝜕 eq2 in
match (b1 , b2) with
| (?t1 ≡ ?t2 : ?A by □), (_ ≡ ?t3 : _ by □) →

EqTm-Trans (return A) (return t1) (return t2) (return t3)
(return eq1) (return eq2)

163

164 APPENDIX A. AML IMPLEMENTATION OF BOUNDARY CONVERSION

let rec boundary-convert j bdry2 =
let bdry1 = 𝜕 j in
let b = bdry1 α

== bdry2 in
match b with true → j | false →
(match (bdry1, bdry2) with
| □ : ?A1 , □ ?A2 →

let eq = tt-refl A1 A2 in
convert j eq

| (? A1 ≡ ?B1 by □), (? A2 ≡ ?B2 by □) →
let eqA = tt-refl A2 A1 in
let eqB = tt-refl B1 B2 in
let eq1 = EqTy-Trans (return A2) (return A1) (return B1)

(return eqA) (return j) in
let eq2 = EqTy-Trans (return A2) (return B1) (return B2)

(return eq1) (return eqB) in
eq2

| (? s1 ≡ ?t1 : ?A1 by □), (? s2 ≡ ?t2 : ?A2 by □) →
let eqA = tt-refl A1 A2 in
let j' = tt-convert j eqA in
(match 𝜕 j' with
| s1 ' ≡ t1 ' : A2 \ by □ →

let eq-s = tt-refl A2 s2 s1 ' in
let eq-t = tt-refl A2 t1 ' t2 in
let eq1 = eqtm-trans eq-s j in
let eq2 = eqtm-trans eq1 eq-t in
eq2)

| ({ _ : ?A1} _, {_ : ?A2} _) →
let a2 = tt-var A2 in
let eqA = tt-refl A2 A1 in
let a1 = tt-convert a2 eqA in
let j' = tt-subst j a1 in
let bdry2' = tt-subst bdry2 a2 in
let j'' = boundary-convert j' bdry2' in
tt-abstr a2 j'')

let boundary-converter = runner coerce j bdry_opt→
match bdry_opt with
| Unbounded→ coerce j
| Boundary ?bdry2 →
let bdry1 = 𝜕 j in
let b = bdry1 ε

== bdry2 in
match b with
| false → coerce j as bdry2
| true → boundary-convert j bdry2

with boundary-converter end

Appendix B

Equational LF in Andromeda 2

The code presented in this appendix attempts to implement Harper’s Equational
Logical Framework (Harper 2021) in Andromeda 2. The rules in (Harper 2021)
do not directly constitute a standard type theory in the sense of Definition 3.1.14
for three reasons. In (Harper 2021), several object rules omit premises introducing
metavariables, and the symbols that each rule introduces do not record all metavariables.
For instance, the lam rule does not include a premise for 𝐾2. The resulting system is
nonetheless presuppositive (Harper 2021, Lemma 1). As Andromeda 2 only accepts
standard type theories, our presentation deviates slightly from (Harper 2021) and
add the omitted premises. As a result, the elided metavariables are automatically
added as arguments to the symbols. In (Harper 2021), there are two introduction rules
for dependent products, pi-cls and pi-sort, both introducing the same symbol. As
a standard type theory is allowed to introduce a symbol only through one rule, we
instead create two kinds of dependent product, one corresponding to each rule, and
add a coherence equation Pi_coh governing their interaction.
The surface language of Andromeda 2 does not match exactly the syntax presented

in Section 4.2, but the differences should be sufficiently minor not to impede readability.
Appendix B.1 defines the rules given in (Harper 2021). Appendix B.2 contains most
of the examples of (Harper 2021). Especially in the latter section, we frequently
use the notation untyped abstractions and substitution that was introduced defined in
Section 4.2.

165

166 APPENDIX B. EQUATIONAL LF IN ANDROMEDA 2

B.1 Equational LF rules

(*

Andromeda formalisation of
"An Equational Logical Framework for Type Theories"

Robert Harper
June 4, 2021

(arxiv:2106.01484v1)

Standard CFTT presentation & Andromeda formalisation by
Philipp G. Haselwarter.

*)

(* We load the eqchk library and libraries postulating
transitivity and symmetry of type and term equality, and define
some auxiliary functions. *)

require eq
require judgemental_equality_type
require judgemental_equality_term

let sym_eq h = match h with
| ?A ≡ ?B → judgemental_equality_type.eq_type_sym A B h
| ?a ≡ ?b : ?A → judgemental_equality_term.eq_term_sym A a b h
end
let rec refl_eq j = match j with
| _ type → judgemental_equality_type.eq_type_refl j
| _ : ?A → judgemental_equality_term.eq_term_refl A j
| ({ _ : ?A} _ :> judgement) → {y : A} (refl_eq j{y} :> judgement)
end

(*
Figure 4: Formation Judgements (begin)

*)

(* Interpreting "cls" as "type". *)
rule Sort type
rule incl (S : Sort) type

with operation ML. coerce (? j : Sort) (□ type) → incl j end

rule Pi_cls (S1 : Sort) ({ X : S1} K2 type) type

rule Eq_cls (S : Sort) (O1 : S) (O2 : S) type

B.1. EQUATIONAL LF RULES 167

(* In [Ha21] the same notation is used for dependent products with
codomain in cls or in sort. In a standard CFTT, each symbol can
only be introduced by a single rule. We therefore introduce a
separate dependent products for sorts. *)

rule Pi_sort (S1 : Sort) ({ X : S1} S2 : Sort) : Sort

(* In order to use application, we need to be able to convert a
term at a sort-valued product to a class-valued product. *)

rule Pi_coh (S1 : Sort) ({ X : S1} S2 : Sort)
: Pi_sort S1 S2
≡ Pi_cls S1 ({ X : S1} S2{X})

(* Install the Pi_coh rule as equality hint. *)
let _ = eq. add_rule Pi_coh

(* To give a standard presentation of equational LF, we have to
modify the lam rule to include a premise specifying the type of
K2. Besides requiring the presence of the premise, CFTT also
records the argument when the symbol is applied. *)

rule lam (S1 : Sort) ({ X : S1} K2 type)
({ X : S1} O2 : K2{X})
: Pi_cls S1 K2

(* Again, we add missing premises S1, K2. *)
rule app (S1 : Sort) ({ X : S1} K2 type)

(O : Pi_cls S1 K2)
(O1 : S1)
: K2{O1}

(* application for f : Pi_sort A B, using Pi_coh *)
let app_sort = derive (A : Sort) ({ X : incl A} B : Sort)

(f : incl (Pi_sort A B)) (a : incl A)
→ (* convert f along Pi_coh, then use app *)
(let f' = let h = Pi_coh A B in convert f h in
app A ({ X : incl A} incl B{X}) f' a)

(* We add a missing premise introducing S.
We will now stop mentioning such missing premises. *)

rule self (S : Sort) (O : S) : (Eq_cls S O O)

(*
Figure 4: Formation Judgements (end)

*)

168 APPENDIX B. EQUATIONAL LF IN ANDROMEDA 2

(*
Figure 5: Structural Judgements (begin)

*)

(* Rules for context formation and variable projection omitted. *)

rule cls_rfl (K type) : K ≡ K
rule cls_st (K type) (K' type) (K'' type)
(K ≡ K') (K'' ≡ K')
: K ≡ K''
rule obj_rfl (K type) (O : K) : O ≡ O : K
rule obj_st (K type) (O : K) (O' : K) (O'' : K)
(O ≡ O' : K) (O'' ≡ O' : K)
: O ≡ O'' : K

(* Term conversion is implemented as a derived rule by appealing
to Andromeda's built-in eliminator for judgemental equality,
`convert`. *)

let obj_cls = derive (K type) (K' type)
(O : K) (K ≡ K' by eq)
→ (convert O eq)

(* Term equality conversion, similarly using `convert` *)
let obj_eq_cls = derive (K type) (K' type)
(O : K) (O' : K)
(O ≡ O' : K by eq_O) (K ≡ K' by eq_K)
→ (convert eq_O eq_K)

(*
Figure 5: Structural Judgements (end)

*)

(*
Figure 6: Equality Judgements (begin)

*)

(* Andromeda provides congruence rules for symbols via the
`congruence` keyword. For the sake of completeness, we present
the congruence rules in [Ha21] as derived rules, but we could
well omit them and use `congruence` when needed. *)

let incl_eq = derive (S : Sort) (S' : Sort)
(S ≡ S' : Sort by α)
→
congruence (incl S) (incl S') α

B.1. EQUATIONAL LF RULES 169

(* install incl_eq as toplevel runner *)
with operation ML. coerce
((_ ≡ _ : Sort) as ?j) ((incl ?S ≡ incl ?S' by □) as ?bdry)
→ incl_eq S S' j
end

let pi_class_eq = derive (S1 : Sort) (S1' : Sort)
({ X : S1} K2 type) ({ X : S1' } K2' type)
(S1 ≡ S1' : Sort by α)
({ X : S1} K2{X} ≡ K2' {convert X (incl_eq S1 S1' α)} by β)
→
congruence (Pi_cls S1 K2) (Pi_cls S1' K2') α β

let eq_class_eq = derive (S : Sort) (S' : Sort)
(O1 : S) (O1' : S) (O2 : S') (O2' : S')
(S ≡ S' : Sort by α) (O1 ≡ O1' : S by β) (O2 ≡ O2' : S' by 𝛾)
→
(eq. add_locally (derive → α) (fun () →
let h = eq. prove (incl S' ≡ incl S by □) in
let 𝛾' = convert 𝛾 h in
congruence (Eq_cls S O1 O2) (Eq_cls S' O1' O2') α β 𝛾'))

let pi_sort_eq = derive (S1 : Sort) (S1' : Sort)
({ X : S1} S2 : Sort) ({ X : S1' } S2' : Sort)
(S1 ≡ S1' : Sort by α)
({ X : S1} S2{X} ≡ (eq. add_locally (derive → α) (fun () →

S2' {X})) : Sort by β)
→
congruence (Pi_sort S1 S2) (Pi_sort S1' S2') α β

(* This rule seems needed for lam_eq because of the phrasing of
the first equation " Γ ⊢ S1 = S1' cls " . It would seem more
natural to require the equation " Γ ⊢ S1 = S1' : Sort "
instead. *)

rule El_incl_injectivity (S1 : Sort) (S1' : Sort)
(incl S1 ≡ incl S1' by α)
: S1 ≡ S1' : Sort

let lam_eq =
derive (S1 : Sort) (S1' : Sort)
({ X : S1} K2 type) ({ X : S1' } K2' type)
({ X : S1} O2 : K2{X}) ({ X : S1' } O2' : K2' {X})

170 APPENDIX B. EQUATIONAL LF IN ANDROMEDA 2

(incl S1 ≡ incl S1' by α)
({ X : S1} K2{X} ≡ K2' {convert X α} by β)
({ X : S1} O2{X} ≡ (eq. add_locally (derive → α) (fun () →

convert O2' {X} (sym_eq β{X})))
: K2{X} by 𝛾)

→
congruence (lam S1 K2 O2) (lam S1' K2' O2')

(El_incl_injectivity S1 S1' α) β 𝛾

(* Congruence for application. Note that no equations for S1 and
K2 are given. No generality is lost, because O1' can be
converted to ΠS1K2 via pi-sort-eq if necessary, and similarly
for O'. *)

let app_eq = derive (S1 : Sort) ({ X : S1} K2 type)
(O : Pi_cls S1 K2) (O' : Pi_cls S1 K2)
(O1 : S1) (O1' : S1)
(O ≡ O' : Pi_cls S1 K2 by α) (O1 ≡ O1' : S1 by β)
→
congruence (app S1 K2 O O1) (app S1 K2 O' O1')

(refl_eq S1) (refl_eq K2) α β

rule app_lam (S1 : Sort) ({ X : S1} K2 type)
({ X : S1} O2 : K2{X}) (O1 : S1)
: app S1 K2 (lam S1 K2 O2) O1 ≡ O2{O1} : K2{O1}

rule lam_app (S1 : Sort) ({ X : S1} K2 type)
(O : Pi_cls S1 K2)
: O ≡ lam S1 K2 ({ X : S1} app S1 K2 O X) : Pi_cls S1 K2

rule reflection (S : Sort) (O1 : S) (O2 : S)
(O : Eq_cls S O1 O2)
: O1 ≡ O2 : S

rule unicity (S : Sort) (O1 : S) (O2 : S)
(O : Eq_cls S O1 O2) (O' : Eq_cls S O1 O2)
: O ≡ O' : Eq_cls S O1 O2

(*
Figure 6: Equality Judgements (end)

*)

(* Full congruence for application, with the possibility to vary
S1 and K2. As claimed, we can derive it from app_eq using
pi_class_eq to convert O' and obj_cls to convert O1'. *)

let app_eq' = derive
(S1 : Sort) (S1' : Sort)

B.1. EQUATIONAL LF RULES 171

({ X : S1} K2 type) ({ X : S1' } K2' type)
(O : Pi_cls S1 K2) (O' : Pi_cls S1' K2')
(O1 : S1) (O1' : S1')

(S1 ≡ S1' : Sort by α)
({ X : S1} K2{X} ≡ (K2' {convert X (incl_eq S1 S1' α)}) by β)

(O ≡
(let h_π = pi_class_eq S1 S1' K2 K2' α β in
convert O' (sym_eq h_π))

: Pi_cls S1 K2 by 𝛾)
(O1 ≡

(eq. add_locally (derive → (sym_eq α)) (fun () → O1' : S1))
: S1 by δ)

→
let O'' = (let h_π = pi_class_eq S1 S1' K2 K2' α β in

convert O' (sym_eq h_π)) in
let O1'' = convert O1' (sym_eq (incl_eq S1 S1' α)) in
app_eq S1 K2 O O'' O1 O1'' 𝛾 δ

172 APPENDIX B. EQUATIONAL LF IN ANDROMEDA 2

B.2 Equational LF examples

(* Large and small dependent LF product. *)
let Π = Pi_cls
let π = Pi_sort

(* Infix notations for non-dependent functions. A ML-typing
annotation disambiguates (b :> judgement) from a boundary. *)

let (»-->) a b = Π a ({ _ : incl a} (b :> judgement))
let (»->) a b = π a ({ _ : incl a} (b :> judgement))

(* Infix notation for application. *)
let (`) f a = match f with
| _ : (Pi_cls ?S1 ?K2) → app S1 K2 f a
| _ : incl (Pi_sort ?S1 ?S2) → app_sort S1 S2 f a
end

(* The `decoder` function allows us to omit applications of `el`
in the definitions of Gödel's T and the dependent version of T.
As the runner it defines (misleadingly called "handler" for
historical reasons) is parametrised by `tp` and `el`, we can
use `decoder` in both definitions. *)

let decoder tp el =

(* check that decoding from tp via el is requested *)
let guard j tp' bdry c_true = match base.(=) tp' tp with
| ML. true → c_true ()
| ML. false → ML.coerce j bdry
end in

handler
| ML. coerce (? j : (incl ?tp')) ((□ : Sort) as ?bdry) →
guard j tp' bdry (fun () → el `j)

| ML. coerce (? j : (incl ?tp')) ((□ type) as ?bdry) →
guard j tp' bdry (fun () → incl (el ` j))

end

let Gödel' s_T =
{tp : Sort}
{el : tp »--> Sort}
(with decoder tp el try (* handle decoding with `el` *)
{nat : tp}
{arr : tp »-> tp »-> tp}
{zero : nat}
{succ : nat »-> nat}

B.2. EQUATIONAL LF EXAMPLES 173

{nat_rec : π tp ({ A} (A »-> (nat »-> A »-> A) »-> nat »-> A))}

{nat_β_z : Π tp ({ A} (Π A ({ b} (Π (nat »-> A »-> A) ({ s}
(Eq_cls A (nat_rec ` A ` b ` s ` zero) b))))))}

{nat_β_s : Π tp ({ A} (Π A ({ b} (Π (nat »-> A »-> A) ({ s} (Π nat ({ n}
(let lhs = nat_rec ` A ` b ` s ` (succ ` n) in
let rest = nat_rec ` A ` b ` s ` n in
Eq_cls A lhs (s ` n ` rest)))))))))}

{lambda : π tp ({ A1} π tp ({ A2} (A1 »-> A2) »-> (arr ` A1 ` A2)))}

{apply : π tp ({ A1} π tp ({ A2} (arr ` A1 ` A2) »-> A1 »-> A2))}

{arr_β : Π tp ({ A1} Π tp ({ A2} Π (A1 »-> A2) ({ F} Π A1 ({ M1}
(let lhs = apply ` A1 ` A2 ` (lambda ` A1 ` A2 ` F) ` M1
in Eq_cls A2 lhs (F ` M1))))))}

{arr_η : Π tp ({ A1} Π tp ({ A2} Π (arr ` A1 ` A2) ({ M}
(let body = {x : A1} apply ` A1 ` A2 ` M ` x in
let l = lam A1 ({ _ : A1} A2) body in
let rhs = lambda ` A1 ` A2 ` l in
Eq_cls (arr ` A1 ` A2) M rhs))))}

(*
Figure 7: Signature of Gödel's T

*)

(* The context is set up, returning a dummy value. *)
Sort)

let Dependent_Gödel's_T_Equality_and_Identity =
{tp : Sort}
{el : tp »--> Sort}
(with decoder tp el try (* handle decoding with `el` *)
{nat : tp}
{arr : tp »-> tp »-> tp}
{pi : π tp ({ A} (A »-> tp) »-> tp)}
{zero : nat}
{succ : nat »-> nat}

{nat_rec : π (nat »-> tp) ({ A}
π (A ` zero) ({ b}
π (π nat ({ m} ((A ` m) »-> (A ` (succ ` m))))) ({ s}
π nat ({ n} A ` n))))}

174 APPENDIX B. EQUATIONAL LF IN ANDROMEDA 2

{nat_β_z : Π (nat »-> tp) ({ A}
Π (A ` zero) ({ b}
Π (π nat ({ m} ((A ` m) »-> (A ` (succ ` m))))) ({ s}
(Eq_cls (A ` zero) (nat_rec ` A ` b ` s ` zero) b))))}

{nat_β_s : Π (nat »-> tp) ({ A}
Π (A ` zero) ({ b}
Π (π nat ({ m} ((A ` m) »-> (A ` (succ ` m))))) ({ s}
Π nat ({ n}
(Eq_cls (A ` (succ ` n))

(nat_rec ` A ` b ` s ` (succ ` n))
(s ` n ` (nat_rec ` A ` b ` s ` n)))))))}

{lambda : π tp ({ A1} π (A1 »-> tp) ({ A2} (π A1 ({ x} A2 ` x))
»-> (pi ` A1 ` A2)))}

{apply : π tp ({ A1} π (A1 »-> tp) ({ A2}
pi ` A1 ` A2 »-> π A1 ({ x} A2 ` x)))}

{pi_β : Π tp ({ A1} Π (A1 »-> tp) ({ A2}
Π (π A1 ({ x} A2 ` x)) ({ F} Π A1 ({ M1}
(let lhs = apply ` A1 ` A2 ` (lambda ` A1 ` A2 ` F) ` M1
in Eq_cls (A2 ` M1) lhs (F ` M1))))))}

{pi_η : Π tp ({ A1} Π (A1 »-> tp) ({ A2} Π (pi ` A1 ` A2) ({ M}
(let body = {x : A1} apply ` A1 ` A2 ` M ` x in
let l = lam A1 ({ x : A1} A2 ` x) body in
let rhs = lambda ` A1 ` A2 ` l in
Eq_cls (pi ` A1 ` A2) M rhs))))}

(*
Figure 8: Signature of Dependent Gödel's T

*)

{eq : π tp ({ A} A »-> A »-> tp)}
{self : π tp ({ A} π A ({ M} (eq ` A ` M ` M)))}
{eqref : Π tp ({ A} Π A ({ M1} Π A ({ M2}

eq ` A ` M1 ` M2 »--> Eq_cls A M1 M2)))}
{equni : Π tp ({ A} Π A ({ M1} Π A ({ M2} (let eqM = (eq ` A ` M1 ` M2) in

Π eqM ({ M} Π eqM ({ M' }
(Eq_cls eqM M M')))))))}

(*
Figure 9: Dependent Equality Type

*)

B.2. EQUATIONAL LF EXAMPLES 175

{id : π tp ({ A} A »-> A »-> tp)}
{refl : π tp ({ A} π A ({ M} (id ` A ` M ` M)))}
{j : π tp ({ A}

π (π A ({ m1} π A ({ m2} (id ` A ` m1 ` m2) »-> tp))) ({ B}
π (π A ({ x} B ` x ` x ` (refl ` A ` x))) ({ r}
π A ({ m} π A ({ m' }
π (id ` A ` m ` m') ({ p}
B ` m ` m' ` p))))))}

{id_β : Π tp ({ A}
Π (π A ({ m1} π A ({ m2} (id ` A ` m1 ` m2) »-> tp))) ({ B}
Π (π A ({ x} B ` x ` x ` (refl ` A ` x))) ({ r}
Π A ({ m}

(let ty = (B ` m ` m ` (refl ` A ` m)) in
let lhs = (j ` A ` B ` r ` m ` m ` (refl ` A ` m)) in
let rhs = (r ` m) in
Eq_cls ty lhs rhs)))))}

(*
Figure 10: Dependent Identity Type

*)

(* The context is set up, returning a dummy value. *)
Sort)

Appendix C

Razširjeni povzetek v slovenščini

This appendix contains a summary of the thesis in Slovene.

C.1 Poglavje 1: Uvod

V disertaciji razvijemo splošno matematično teorijo za teorije odvisnih tipov in v
učinkovni metateoriji opišemo, kako z njimi računamo. V literaturi se pojavljajo
študije mnogih primerov teorij odvisnih tipov, kot na primer Martin-Löfova teorija
tipov (Martin-Löf 1998) ali račun konstrukcij (Coquand in Huet 1988). Vendar pa
ni splošno sprejete definicije, ki bi zajela širok nabor primerov in omogočila razvoj
splošne metateorije. S tem namenom predlagamo definicijo v obliki končnih teorij
tipov in dokažemo osnovne metateoretične rezultate. Nato reformuliramo končne
teorije tipov, da omogočajo praktičen razvoj dokazov, s čimer pridemo do kontekstno
neodvisnih teorij tipov. Te nam omogočajo razvoj splošnega metajezika za standardne
končne teorije tipov.
Radi bi preučevali širok razred teorij tipov, tudi tiste, ki ne omogočajo odločljivega

preverjanja tipov. S tem namenom bomo posvojili Martin-Löfov stil prezentacije teorij
tipov. Martin-Löf predstavi teorije tipov preko štirih sodb:
Pod predpostavkami Γ sodba

• Γ ⊢ 𝐴 type trdi, da je 𝐴 dobro oblikovan tip,
• Γ ⊢ 𝐴 ≡ 𝐵 trdi, da sta tipa 𝐴 in 𝐵 enaka,
• Γ ⊢ 𝑠 : 𝐴 trdi, da je 𝑠 term tipa 𝐴,
• Γ ⊢ 𝑠 ≡ 𝑡 : 𝐴 trdi, da sta terma 𝑠 in 𝑡 enaka pri tipu 𝐴.

Teorija tipov je podana z množico pravil, ki jih induktivno beremo kot definicijo
deduktivnega sistema za izpeljevanje sodb.

Pojasnilo. Zaradi prostorskih omejitev v ta povzetek ne moremo vključiti polnih
definicij. Pogosto bomo opustili dele definicij in izrekov, ter vključili le informacije,
ki so potrebne za predstavitev splošne ideje.

177

178 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

C.2 Poglavje 2: Končne teorije tipov

Vpoglavju 2 predlagamo končno teorijo tipov kot elementarno definicijo za širok razred
teorij tipov v stilu Martina-Löfa. Teorija tipov mora imeti nekatere metateoretične
lastnosti: sestavni deli izpeljive sodbe morajo biti dobro oblikovani, dopustiti mora
pravila za substitucijo in vsak term mora imeti enoličen tip.
Definicija teorije tipov je zgrajena po stopnjah. Vsaka stopnja izboljša pojem

pravila in teorije tipov, saj določi pogoje za dobro oblikovanje. Začnemo s surovo
sintakso (§2.1.1) izrazov in formalnih metaspremenjivk, iz katerih zgradimo kontekste,
substitucije in sodbe.

Izraz za tip ali kar preprosto tip dobimo z uporabo simbola za tip na argumentih
S(𝑒1, . . . , 𝑒𝑛) ali z uporabo metaspremenljivke za tip na izrazih za term M(𝑡1, . . . , 𝑡𝑛).
Izraz za term ali kar preprosto term je lahko prosta spremenljivka a, vezana spre-
menljivka 𝑥, uporaba simbola za term na argumentih S(𝑒1, . . . , 𝑒𝑛), ali uporaba
metaspremenljivke za term na izrazih za term M(𝑡1, . . . , 𝑡𝑛).
Oblika za (hipotetično) sodbo je

Θ;Γ ⊢ J.

Nato vpeljemo surova pravila (§2.1.3), formalen pojem, ki mu pogosto rečemo
“shematično pravilo sklepanja”.

Definicija C.2.1. Surovo pravilo nad signaturo Σ je hipotetična sodba nad Σ oblike
Θ; [] ⊢ j. Takšno pravilo označimo z

Θ =⇒ j.

Elementi Θ so premise in j je zaključek. Pravimo, da je pravilo objektno pravilo,
kadar je j sodba za tip ali term, in pravilo enakosti, kadar je j sodba enakosti.

Primer C.2.2. Surova pravila lahko prevedemo nazaj v njihovo tradicionalno obliko
tako, da zapolnimo glave z generično uporabljenimi metaspremenjivkami. Na primer,
bralec lahko preveri, da je surovo pravilo

A:(□ type), s:(□ : A), t:(□ : A), p:(□ : Id(A, s, t)) =⇒ s ≡ t : A by ★

v korespondenci z refleksijo enakosti, pravilom ekstenzionalne teorije tipov, ki ga
tradicionalno zapišemo kot

Eq-Reflect
⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)

⊢ s ≡ t : A

Za lažjo berljivost bomo surova pravila prikazovali v tradicionalni obliki, a bomo
uporabili definicijo 2.1.5, ko je to zaradi nivoja formalnosti potrebno.

C.2. POGLAVJE 2: KONČNE TEORIJE TIPOV 179

TT-Var
a ∈ |Γ|

Θ;Γ ⊢ a : Γ(a)

TT-Meta
Θ(M𝑘) = {𝑥1:𝐴1} · · · {𝑥𝑚:𝐴𝑚} b
Θ;Γ ⊢ 𝑡 𝑗 : 𝐴 𝑗 [�⃗� (𝑗)/𝑥 (𝑗)] for 𝑗 = 1, . . . , 𝑚

Θ;Γ ⊢ b [�⃗�/𝑥]
Θ;Γ ⊢ (b [�⃗�/𝑥]) M𝑘 (�⃗�)

TT-Abstr
Θ;Γ ⊢ 𝐴 type a ∉ |Γ| Θ;Γ, a:𝐴 ⊢ J[a/𝑥]

Θ;Γ ⊢ {𝑥:𝐴} J

Slika C.1: Pravila zaprtja za spremenljivke, metaspremenljivke in abstrakcijo.

Definicija C.2.3. Naj bo

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b

surovo objektno pravilo za mejo nad Σ. Pridruženo simbolno pravilo za S ∉ |Σ| je
surovo pravilo

M1:B1, . . . ,M𝑛:B𝑛 =⇒ b [S(ˆ︁M1, . . . , ˆ︁M𝑛)]

nad razširjeno signaturo ⟨Σ,S ↦→(𝑐, [ar(B1), . . . , ar(B𝑛)])⟩, kjer je ˆ︁M generična
uporaba metaspremenljivke M s pridruženo mejo B, definirana kot

1. ˆ︁𝑀 = {𝑥1} · · · {𝑥𝑘 }M(𝑥1, . . . , 𝑥𝑘), če je ar(B) = (𝑐, 𝑘) in 𝑐 ∈ {Ty, Tm},

2. ˆ︁𝑀 = {𝑥1} · · · {𝑥𝑘 }★, če je ar(B) = (𝑐, 𝑘) in 𝑐 ∈ {EqTy,EqTm}.

Primer C.2.4. V skladu z definicijo 2.1.10 je simbolno pravilo za Π generirano s
pravilom za mejo

⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ □ type

Res, pridruženo simbolno pravilo za Π je

⊢ A type ⊢ {𝑥:A} B(𝑥) type

⊢ Π(A, {𝑥}B(𝑥)) type
.

Nato uvedemo strukturna pravila (slike 2.4, 2.5, 2.6), ki pripadajo vsaki teoriji
tipov, in definiramo pravila kongruence (definicija 2.1.13).
Ta pravila so potem zbrana v surovih teorijah tipov (definicja 2.1.16).

Definicija C.2.5. Surova teorija tipov 𝑇 nad signaturo Σ je družina surovih pravil
nad Σ, ki jim pravimo specifična pravila teorije 𝑇 . Pridružen deduktivni sistem
teorije 𝑇 je sestavljen iz:

1. strukturnih pravil nad Σ:

180 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

a) pravila zaprtja za spremenljivke, metaspremenljivke, kongruence meta-
spremenljivk in abstrakcije (slika 2.4),

b) pravila zaprtja za enakost (slika 2.5),
c) pravila zaprtja za meje (slika 2.6);

2. instanciacij specifičnih pravil teorije 𝑇 (definicija 2.1.8);

3. za vsako specifično objektno pravilo teorije 𝑇 imamo instanciacijo pridruženega
pravila kongruence (definicija 2.1.13).

Pišemo Γ ⊢𝑇 J, ko je Γ ⊢ J izpeljiva glede na deduktivni sistem, ki je pridružen
teoriji 𝑇 , in podobno za Γ ⊢𝑇 B.

Da bi preprečili cikle v izpeljavah dobre tipiziranosti in podali princip indukcije
za končne teorije tipov, uvedemo končna pravila in končne teorije tipov (§2.1.4).

Definicija C.2.6. Naj bo 𝑇 teorija nad signaturo Σ. Surovo pravilo Θ =⇒ b 𝑒 nad Σ je
končno nad 𝑇 , ko velja ⊢𝑇 Θ mctx in Θ; [] ⊢𝑇 b. Podobno je surovo pravilo za mejo
Θ =⇒ b končno, ko velja ⊢𝑇 Θ mctx in Θ; [] ⊢𝑇 b.

Končna teorija tipov je surova teorija tipov (𝑅𝑖)𝑖∈𝐼 , za katero obstaja dobro
osnovana urejenost (𝐼, ≺), za katero velja, da je vsako pravilo 𝑅𝑖 končno nad (𝑅 𝑗) 𝑗≺𝑖 .

Na koncu so uvedemo standardne teorije tipov (definicija 2.1.20), pri katerih je
vsakemu simbolu pridruženo enolično pravilo.

Definicija C.2.7. Končna teorija tipov je standardna če so njena specifična objektna
pravila simbolna pravila in ima vsak simbol natanko eno pridruženo pravilo.

Dokažemo metaizreke o surovih (§2.2.1), končnih (§2.2.2), in standardnih teorijah
tipov (§2.2.3).

Prispevki. Predlagamo matematično natančno definicijo teorije tipov. Vse konstruk-
cije v tem poglavju so konstruktivne s ciljem uporabe zgolj elementarnih pojmov, ki
jih je mogoče interpretirati v naboru različnih formalizmov. Da povzamemo:

• definiramo pojem mestnosti in signature, ki ustrezata strukturi vezanja spremen-
ljivk, ki jo pogosto najdemo v teorijah tipov.

• definiramo splošen pojem surove sintakse,
• podamo način, kako formalno ravnamo z metaspremenljivkami,
• uvedemo uporabno dekompozicijo sodbe na glavo in mejo,
• definiramo pravila, ki se ujemajo s pogosto prakso v teoriji tipov,
• razložimo lastnosti, ki naredijo teorijo tipov končno in standardno,
• dokažemo naslednje metaizreke:

– dopustnost substitucije in enakosti substitucij (izrek 2.2.8),
– dopustnost instanciacije metaspremenljivk (izrek 2.2.13) in enakosti in-
stanciacij (izrek 2.2.17),

C.3. POGLAVJE 3: KONTEKSTNO NEODVISNE TEORIJE TIPOV 181

– izpeljivost predpostavk (trditev 2.2.18),
– dopustnost “ekonomičnih” pravil (trditev 2.2.19, 2.2.20)
– principi inverzije (izrek 2.2.22),
– enoličnost tipiziranja (izrek 2.2.24).

C.3 Poglavje 3: Kontekstno neodvisne teorije tipov
Cilj tega poglavja je razviti prezentacijo končne kontekstno neodvisne teorije tipov,
ki lahko služi kot osnova za implementacijo v dokazovalnem pomočniku. Definicija
končne teorije tipov v poglavju 2 je primerna za študijo metateoretičnih lastnosti
teorije tipov, vendar pa ne naslavlja problemov pri implementaciji. To zlasti velja za
kontekste, ki so v tradicionalnih prezentacijah teorij tipov eksplicitno predstavljeni s
seznami.
Radi bi zamenjali sodbe oblike “Θ;Γ ⊢ J” s kratko obliko “J”. V tradicionalnih

prezentacijah logike, kot tudi v Γ∞ (Geuvers in sod. 2010), to dosežemo tako, da proste
spremenljivke eksplicitno označimo s tipi: namesto, da bi imeli a : 𝐴 v kontekstu
spremenljivk, vsako pojavitev a označimo s svojim tipom a𝐴.
Isto idejo uporabimo tudi pri kontekstno neodvisnih teorijah tipov, vendar pa

moramo premagati številne tehnične zaplete. Največji izziv je pomanjkanje krepitve
(strengthening), ki pravi, da če je Θ;Γ, a:𝐴,Δ ⊢ J izpeljiva sodba in se a ne pojavi
v Δ in J, potem je Θ;Γ,Δ ⊢ J tudi izpeljiva sodba. Primer pravila, ki krši krepitev, je
refleksija enakosti iz primera 2.1.7,

⊢ A type ⊢ s : A ⊢ t : A ⊢ p : Id(A, s, t)
⊢ s ≡ t : A

Ker se v zaključku ne pojavi metaspremenljivka p, ne bomo zabeležili dejstva, da smo
morda uporabili spremenljivko pri izpeljavi četrte premise. Posledično samo iz sodbe
ne moremo ugotoviti, katere spremenljivke se morajo pojaviti v kontekstu. Izkaže
se, da so srž problema spremenljivke, ki jih izpustimo v izpeljavah enačb. Situacijo
lahko popravimo tako, da spremenimo sodbe enakosti, ki po novem nosijo dodatno
informacijo o tem, katere spremenljivke smo uporabili pri izpeljavi.
V kontekstno neodvisnih teorijah tipov spremenimo sintakso izrazov (§3.1.1) tako,

da je vsaka prosta spremenljivka označena s svojim tipom a𝐴, namesto da bi ji tip
dodelil kontekst. Ker so spremenljivke, ki se pojavljajo v oznaki s tipom 𝐴, tudi
označene s svojimi tipi, se zabeleži odvisnost med spremenljivkami. Torej sodbe
v kontekstno neodvisnih teorijah tipov ne nosijo s seboj eksplicitnega konteksta. Z
metaspremenljivkami ravnamo podobno. Upoštevati moramo tudi pravila, ki ne
nosijo informacije o dokazu (proof-irrelevant rules). Tak primer je refleksija enakosti,
kjer se v zaključku pravila ne pojavljajo vse spremenljivke, ki nastopajo v izpeljavi
premis. Zato sodbe enakosti oplemenitimo z množicami predpostavk (§3.1.1.5). Za
intuicijo si lahko predstavljamo, da v sodbi ⊢ 𝐴 ≡ 𝐵 by 𝛼 množica predpostavk 𝛼
vsebuje (označene) spremenljivke, ki smo jih uporabili pri izpeljavi enačbe, vendar ne
nastopajo med prostimi spremenljivkami tipov 𝐴 in 𝐵.

182 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

Izraz za term 𝑠, 𝑡 ::= a𝐴 prosta spremenljivka|︁|︁ 𝑥 vezana spremenljivka|︁|︁ S(𝑒1, . . . , 𝑒𝑛) uporaba simbola za term S|︁|︁ MB (𝑡1, . . . , 𝑡𝑛) uporaba metaspremenjivke za term MB|︁|︁ κ(𝑡, 𝛼) pretvorba

Množica predpostavk 𝛼, 𝛽 ::= {| . . . , 𝑎𝐴𝑖 , . . . , 𝑥 𝑗 , . . . ,MB
𝑘 , . . . |}

Sodba j ::= 𝐴 type 𝐴 je tip|︁|︁ 𝑡 : 𝐴 𝑡 ima tip 𝑇|︁|︁ 𝐴 ≡ 𝐵 by 𝛼 𝐴 in 𝐵 sta enaka tipa|︁|︁ 𝑠 ≡ 𝑡 : 𝐴 by 𝛼 𝑠 in 𝑡 sta enaka terma pri tipu 𝐴
...

Slika C.2: Surova sintaksa končnih kontekstno neodvisnih teorij tipov.

CF-Var

⊢ a𝐴 : 𝐴

CF-Abstr
⊢ 𝐴 type a𝐴 ∉ fv(J) ⊢ J[a𝐴/𝑥]

⊢ {𝑥:𝐴} J

CF-Conv-Tm
⊢ 𝑡 : 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼

asm(𝑡, 𝐴, 𝐵, 𝛼) = asm(𝑡, 𝐵, 𝛽)
⊢ κ(𝑡, 𝛽) : 𝐵

Slika C.3: Izvleček kontekstno neodvisnih pravil.

Pravilo za pretvorbo v teoriji tipov dovoljuje uporabo sodbene enakosti za kon-
strukcijo sodbe za term. Da bi zagotovili, da se množice predpostavk ne izgubijo v
rezultatu pretvorbe, v sintakso vključimo pretvorjene terme (slika 3.1).
Po vzoru razvoja končnih teorij tipov vpeljemo surova kontekstno neodvisna

pravila in surove kontekstno neodvisne teorije tipov (§3.1.2). Nadaljujemo z definicijo
končnih kontekstno neodvisnih pravil in končnih kontekstno neodvisnih teorij tipov, za
katere lahko dobro oblikovanost izpeljemo glede na dobro urejenost (definicija 3.1.13).
Na koncu definiramo še standardne kontekstno neodvisne teorije (definicija 3.1.14).
Verzija končnih kontekstno neodvisnih pravil in teorij tipov je zelo podobna originalni
s konteksti.
Nato dokažemo metaizreke o surovi (§3.2.1), končni (§3.2.2) in standardni (§3.2.3)

kontekstno neodvisni teoriji tipov. V razdelku 3.2.4 dokažemo, da v nasprotju s
končnimi teorijami tipov surove kontekstno neodvisne teorije tipov zadoščajo krepitvi
(izrek 3.2.16).

C.3. POGLAVJE 3: KONTEKSTNO NEODVISNE TEORIJE TIPOV 183

Izrek C.3.1 (Krepitev). Če surova kontekstno neodvisna teorija tipov izpelje

⊢ {�⃗�:�⃗�}{𝑥:𝐴} J

in 𝑥 ∉ bv(J), potem izpelje tudi ⊢ {�⃗�:�⃗�} J.

Konstrukcije, ki so podlaga za te metaizreke, so definirane na sodbah in ne na
izpeljavah. Zato jih lahko učinkovito implementiramo v dokazovalnem pomočniku za
kontekstno neodvisne teorije tipov in pri tem ne shranjujemo dreves izpeljav.
Na koncu pokažemo korespondencomed teorijami tipov in kontekstno neodvisnimi

teorijami tipov ter konstruiramo prevedbi v obe smeri (§3.3). Da ločimo med obema
verzijama teorije tipov uporabljamo predponi “tt“ (za “tradicionalne tipe“) in “cf“ (za
“kontekstno neodvisne tipe“ (context-free).
Najprej pokažemo, kako prevedemo posamezne dele cf-teorij v ustrezne dele

tt-teorij. Načrt je preprost: premaknemo oznake s spremenljivk v kontekste, pobrišemo
pretvorbe in zamenjamo množice predpostavk z vrednostjo ★.

Izrek C.3.2 (Prevedba iz končnih cf- v tt-teorije). Naj bo 𝑇 končna cf-teorija, katere
prevedba 𝑇tt je prav tako končna. Naj bo Θ;Γ tak tt-kontekst, da velja ⊢𝑇tt Θ mctx in
Θ ⊢𝑇tt Γ vctx. Če velja ⊢𝑇 J in je Θ;Γ primeren za J, potem velja Θ;Γ ⊢𝑇tt ⌊J⌋.

Posledica C.3.3. Prevedba standardne cf-teorije je standardna tt-teorija.

Prevedba iz tt-teorije v cf-teorije zahteva, da označimo spremenljivke z informaci-
jami o tipih, vstavimo pretvorbe in rekonstruiramo množice predpostavk.

Izrek C.3.4 (Prevedba iz standardne tt- v cf-teorijo). Za vsako standardno tt-teorijo
𝑇 , standardno cf-teorijo 𝑇 ′, ki je primerna za 𝑇 , in Θ, 𝜃, Γ, 𝛾 kot zgoraj, če velja
Θ;Γ ⊢𝑇 J, potem obstaja primerna cf-sodba J′ za J glede na 𝜃, 𝛾 da velja ⊢𝑇 ′ J′.

Prispevki. Predlagamo definicijo kontekstno neodvisne teorije tipov. Pokažemo, da
kontekstno neodvisne teorije tipov zadostujejo uporabnim mataizrekom. Priskrbimo
natančno povezavo s končnimi teorijami tipov. Da povzamemo:

• definiramo sintakso z označenimi spremenljivkami in metaspremenljivkami,
• definiramo kontekstno neodvisne sodbe z množicami predpostavk,
• definiramo primerna strukturna pravila (slike 3.8, 3.7, 3.6),
• razložimo lastnosti, ki naredijo kontekstno neodvisno teorijo tipov končno in

standardno,
• dokažemo naslednje metaizreke:

– dopustnost substitucije (izrek 3.2.4, 3.2.7),
– izpeljivost predpostavk (izrek 3.2.5),
– dopustnost instanciacije metaspremenjivk (trditev 3.2.8),
– dopustnost “ekonomičnih” pravil (trditev 3.2.9, 3.2.10)
– principi inverzije (izrek 3.2.14),
– enoličnost tipiziranja (izrek 3.2.15),

184 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

– dopustnost krepitve (izrek 3.2.16),
• podamo prevedbo končnih kontekstno neodvisnih teorij tipov v končne teorije
tipov s konteksti (izrek 3.3.5),

• podamo prevedbo standardnih teorij tipov s konteksti v standardne kontekstno
neodvisne teorije tipov (izrek 3.3.10).

C.4 Poglavje 4: Učinkovni metajezik za teorije tipov

V poglavju 4 predstavimo metajezik Andromeda (AML), učinkovni programski jezik,
ki omogoča prikladno manipulacijo sodb in pravil kontekstno neodvisne teorije tipov
ter podpira pogoste tehnike za razvoj dokazov.
Definicija kontekstno neodvisnih teorij tipov je primerna, da nam lahko služi kot

jedro dokazovalnega pomočnika. AML kombinira primitivne pojme teorije tipov za
konstrukcijo sodb, meja in pravil s programerskimi konstruktorji za splošno rabo,
kot so funkcije, algebrajske učinkovne operacije in poganjalci (runners). Navdih
za operacijsko semantiko AML je dvosmerno tipiziranje. V §4.1.1 pojasnimo
kako deklarativno definicijo teorije tipov izboljšamo v dvosmerno. Nato uvedemo
dvosmerno evalvacijo, ki jo bomo posplošili na kontekstno neodvisne teorije tipov.
Učinkovnost AML se kaže v uporabi operacij in poganjalcev, kar pojasnimo v razdelku
4.1.2. Definiramo formalno sintakso AML izračunov, vrednosti in ukazov na najvišjem
nivoju (§4.2).

Sintaksa. Izrazi v metajeziku Andromeda se delijo na inertne vrednosti in izračune
s (potencialnimi) učinki, ki se evalvirajo v rezultate.

Konkretna sintaksa Abstraktna sintaksa Pomen Način

Izračun 𝐶 ∋ 𝑐 ::=
return 𝑣 return(𝑣) vrednost 〜

let 𝑥 = 𝑐1 in 𝑐2 let(𝑐1 , 𝑥. 𝑐2) lokalna definicija 〜, ✓
match 𝑣 with (𝑝 ⇒ 𝑐)∗ match(𝑣, (𝑝. 𝑐) ∗) primer ujemanja 〜, ✓
op 𝑣 perform(op, 𝑣) izvedi operacijo 〜, ✓
with 𝑣 run 𝑐 run(𝑣, 𝑐) poženi s poganjalcem 〜, ✓

Slika C.4: Sintaksa splošnih AML izračunov (izvleček).

Izračuni na sliki 4.4 so znani konstrukti iz programskih jezikov za splošno rabo.
Izračuni na sliki 4.5 implementirajo pravila za kontekstno neodvisne teorije tipov.

Da lahko konstruiramo samo izpeljive sodbe, zagotovimo tako, da nikoli neposredno
ne manipuliramo zgolj z deli sintakse, kot so surovi termi, ampak vedno le s sodbami.

Vrednosti v AML (slika 4.6) lahko ponovno klasificiramo kot tiste, ki pritičejo
programskim jezikom za splošno rabo, in tiste, ki so namenjene teoriji tipov. Imamo
spremenljivke, funkcije, poganjalce in konstruktorje podatkovnih tipov v AML.

C.4. POGLAVJE 4: UČINKOVNI METAJEZIK ZA TEORIJE TIPOV 185

Konkretna sintaksa Abstraktna sintaksa Pomen Način

Izračun 𝐶 ∋ 𝑐 ::=
𝑐 as 𝑣 ascribe(𝑐, 𝑣) pripis meje 〜

tt-var 𝑣 tt-var(𝑣) sveža tt-spremenljivka 〜
tt-abstr 𝑣1 𝑣2 tt-abstr(𝑣1 , 𝑣2) abstrakcija 〜

𝑣1
α
== 𝑣2 tt-alpha-equal(𝑣1, 𝑣2) alfa enakost 〜

tt-convert 𝑣1 𝑣2 tt-convert(𝑣1, 𝑣2) pretvorba 〜

𝜕𝑣 tt-bdry-of(𝑣) meja sodbe 〜

Slika C.5: Sintaksa AML izračunov za teorije tipov (izvleček).

Konkretna sintaksa Abstraktna sintaksa Pomen

Vrednost 𝑉 ∋ 𝑣 ::=
𝑥 var(𝑥) spremenljivka
runner (| op-case)∗ runner(op-case∗) poganjalec
∅ J sodba, glej sliko 3.1

Rezultat 𝑅 ∋ 𝑟 ::=
∅ val(𝑣) vrednost
∅ op(op, 𝑣1, 𝑣2, 𝑥.𝑐𝜅) operacija

Slika C.6: Sintaksa AML vrednosti in rezultatov (izvleček).

Konkretna sintaksa Abstraktna sintaksa Pomen

Sklad vrhnjega poganjalca R ::=
R [𝑐] = with 𝑣1 run . . . with 𝑣𝑛 run 𝑐

Teorija T ::=
{. . . , 𝑅 ↦→ (rule 𝑀1 : B1 =⇒ ... =⇒ rule 𝑀𝑛 : B𝑛 =⇒ j) , . . .}

Ukaz na najvišjem nivoju cmd ::=
rule 𝑅 𝑣 rule(𝑅, 𝑣) definicija pravila

Vzorec 𝑝 ::=
?𝑥 p-var(𝑥) spremenljivka
𝑆(𝑝∗) p-sym(𝑆, 𝑝∗) uporaba simbola

Slika C.7: Sintaksa AML ukazov na najvišjem nivoju in vzorcev (izvleček).

Program v AML je sestavljen iz zaporedja ukazov na najvišjem nivoju (slika 4.7).
Vzorci na sliki 4.7, ki jih uporabljamo skupaj z match, implementirajo metaizreke
teorije tipov. Izrek o inverziji je implementiran preko p-sym(𝑆, 𝑝∗).

Operacijska semantika. Bistvo operacijske semantike za AML zajema kombinacija
dvosmerne evalvacije z operacijami in poganjalci. Osrednji vidik AML je uporaba
učinkov in operacije pokažejo uspešno interakcijo z dvosmerno evalvacijo (§4.3.1).
Uporabljamo prezentacijo velikih korakov v stilu “drobnozrnatega neučakanega
izvajanja” (fine-grained call-by-value) (Levy in sod. 2003). Definiramo dve evalvacijski

186 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

funkciji, synth-comp : Th × 𝐶 ⇀ 𝑅 in check-comp : Th × 𝐶 × 𝐵 ⇀ 𝑅. Tu Th, 𝐶, 𝐵,
in 𝑅 po vrsti pomenijo CFTT teorije, izračune, CFTT meje in rezultate. Uporabljali
bomo oznako T | 𝑐 〜 𝑟 za “𝑐 sintetizira 𝑟” in T | 𝑐@ B ✓ 𝑟 za “ko 𝑐 preverimo z B
se evalvira v 𝑟”. V oznaki za evalvacijski funkciji bomo praviloma opuščali argument
T, ki označuje teorijo.

Syn-op
perform(op, 𝑣) 〜 op(op, 𝑣,Unbounded, 𝑥.return (𝑥))

Chk-op
perform(op, 𝑣) @ B ✓ op(op, 𝑣,Boundary(B), 𝑥.return (𝑥))

Slika C.8: Operacijska semantika operacij.

Chk-let-val
𝑐1 〜 val (𝑣) 𝑐2 [𝑣/𝑥] @ B ✓ 𝑟

let(𝑐1, 𝑥.𝑐2) @ B ✓ 𝑟

Chk-let-op
𝑐1 〜 op(op, 𝑣1, 𝑣2, 𝑦.𝑐𝜅)

let(𝑐1, 𝑥.𝑐2) @ B ✓ op(op, 𝑣1, 𝑣2, 𝑦.let(𝑐𝜅 , 𝑥.ascribe(𝑐2, B)))

Slika C.9: Operacijska semantika vezave “let” (izvleček).

Syn-run-op-handle
𝑐 〜 op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅)

𝑣 = runner(. . . , case-op(op, 𝑥.𝑦.𝑐op), . . .)
let 𝑧 = match 𝑣2 with
| Unbounded→ 𝑐op [𝑣1/𝑥, 𝑣2/𝑦]
| Boundary ?B → 𝑐op [𝑣1/𝑥, 𝑣2/𝑦] as B

in with 𝑣 run 𝑐𝜅

〜 𝑟

with 𝑣 run 𝑐 〜 𝑟

Chk-run-op-handle
𝑐 @ B ✓ op(op, 𝑣1, 𝑣2, 𝑧.𝑐𝜅)

𝑣 = runner(. . . , case-op(op, 𝑥.𝑦.𝑐op), . . .)
let 𝑧 = match 𝑣2 with
| Unbounded→ 𝑐op [𝑣1/𝑥, 𝑣2/𝑦]
| Boundary ?B → 𝑐op [𝑣1/𝑥, 𝑣2/𝑦] as B

in with 𝑣 run 𝑐𝜅

@ B ✓ 𝑟

with 𝑣 run 𝑐 @ B ✓ 𝑟

Slika C.10: Operacijska semantika poganjalcev (izvleček).

Ko se 𝑐 evalvira v operacijo op in ima poganjalec 𝑣 vejo 𝑥.𝑦.𝑐op, ki pripada
operaciji op, se dviganje operacije op ustavi. Kontinuacija 𝑐𝜅 pričakuje, da bo rezultat
poganjalca vezan na 𝑧. Torej evalviramo let-stavek, ki na 𝑧 veže vrednost, ki jo pridela
veja 𝑐op poganjalca. Spomnimo se iz Chk-op, da operacija, ki se izvede v načinu

C.4. POGLAVJE 4: UČINKOVNI METAJEZIK ZA TEORIJE TIPOV 187

preverjanja, shrani svojo mejo za preverjanje kot Boundary B, za razliko od Syn-op,
ki bo pridelal Unbounded za 𝑣2. Veja 𝑐op poganjalca se evalvira v načinu sinteze, če
velja 𝑣2 = Unbounded. Če pa je 𝑣2 = Boundary B, potem se je izvedla operacija med
preverjanjem z B in tako je 𝑐op ovita s pripisom meje as B.
Evalvacija izrazov v AML, ki se nanašajo na teorijo tipov, tesno sledi pravilom

kontekstno neodvisnih teorij tipov.

Syn-Ascr
𝑐 @ B ✓ J

ascribe(𝑐, B) 〜 J
Chk-Syn

let x = 𝑐 in
let B = 𝜕x in
let b = B α

== B in
match b with
| true → return x
| false → (coerce x) as B

〜 𝑟

𝑐 @ B ✓ 𝑟

Slika C.11: Operacijska semantika pripisa meje in menjave načina.

Pripis meje (Syn-Ascr) nam omogoča, da prisilno zamenjamo način iz sinteze v
preverjanje. Če bi radi v načinu preverjanja evalvirali izračun 𝑐, ki je naravno v načinu
sinteze, uporabimo pravilo Chk-Syn. Če za 𝑐 ne moremo uporabiti informacije o
meji, ki nam je na voljo, tak primer je 𝑐 = return (𝑣), potem izračun sintetiziramo in
vežemo na x. Če je meja za preverjanje B alfa-enaka sintetizirani meji 𝜕 x, rezultat
vrnemo. Če zaznamo neujemanje, izvedemo coerce x pod pripisom meje B.
Prišli smo do pametnih konstruktorjev za teorijo tipov.

Syn-tt-var
a𝐴 fresh

tt-var(𝐴 type) 〜 val (a𝐴 : 𝐴)

Syn-tt-abstr
𝑣1 = a𝐴 : 𝐴 𝑣2 = J or B a𝐴 ∉ fvt(𝑣2)
tt-abstr(𝑣1, 𝑣2) 〜 val ({𝑥:𝐴} 𝑣2 [𝑥/a𝐴])

Syn-tt-subst
𝑣 = J or B

tt-subst(({𝑥:𝐴} 𝑣), (𝑡 : 𝐴)) 〜 val (𝑣 [𝑡/𝑥])

Slika C.12: Operacijska semantika spremenljivk teorije tipov.

Dopustnost substitucije je implementirana preko Syn-tt-subst.

Syn-tt-bdry-of
J = B 𝑒

tt-bdry-of(J) 〜 val (B)

Slika C.13: Operacijska semantika za projekcijo meje v teoriji tipov.

Dano sodbo lahko projiciramo na svojo mejo preko Syn-tt-bdry-of. Ta operacija
realizira izrek 3.2.5 o izpeljivosti predpostavk v kontekstno neodvisni teoriji tipov.

188 APPENDIX C. RAZŠIRJENI POVZETEK V SLOVENŠČINI

Izpeljane oblike. Da bi pokazali kako ekspresiven je metajezik AML in priskrbeli
uporabnikom-prijazen jezik, definiramo nekaj izpeljanih oblik (§4.4). Vsaka izmed
izpeljanih oblik ima ekvivalentno obliko v AML. Slednja definira pomen prve in
inducira operacijsko semantiko.

𝑐𝑅 𝑐𝑎𝑟𝑔

let R = 𝑐𝑅 in
match R with rule (_ : ?bdry) _ →
let a = 𝑐𝑎𝑟𝑔 as bdry in
tt-inst R a

〜

Syn-TT-apply-val-val
𝑐𝑅 〜 val (rule (𝑀 : B) =⇒ 𝑣) 𝑐𝑎𝑟𝑔 @ B ✓ val (B 𝑒)

𝑐𝑅 𝑐𝑎𝑟𝑔 〜 val (𝑣 [𝑒/𝑀])

Slika C.14: Sintaksa in inducirana operacijska semantika uporabe pravila.

Izpeljana oblika za uporabo pravila (slika 4.24) nam dovoljuje, da lahko zaporedno
napišemo več iteriranih instanciacij metaspremenljivk. Ponavadi je 𝑐𝑅 pravilo ali
nadaljnja uporaba pravila. V tej situaciji bo vsaka naslednja uporaba pravila v 𝑐𝑅
po vrsti evalvirala svoje argumente v načinu preverjanja z mejo, ki pripada premisi
pravila instanciirani s prejšnjimi argumenti.
Predstavimo AML program, ki implementira lemo 3.2.17 in dovoljuje uporabniku,

da transparentno dela s kontekstno neodvisnimi teorijami tipov ter ignorira pretvorbe
(§4.4.2). Pripadajoča programska koda se nahaja v dodatku A.
Podamo kratko skico izrekov skladnosti in polnosti za AML za kontekstno

neodvisne teorije tipov.

Domneva C.4.1 (Skladnost AML). Naj bo T standardna kontekstno neodvisna teorija
tipov. Če velja T | 𝑐 〜 val (J), potem je ⊢ J izpeljiva v T.

Domneva C.4.2 (Polnost AML). Naj bo T standardna kontekstno neodvisna teorija
tipov. Če ima J dobro-tipizirane oznake in velja ⊢T J, potem obstaja AML program 𝑐,
da velja T | 𝑐 〜 val (J′) in ⌊J⌋ = ⌊J′⌋.

Podrobni dokazi obeh domnev so prepuščeni nadaljnjim raziskavam.

AML v Andromedi 2. Dokazovalni pomočnik Andromeda 2 (Bauer, Haselwarter in
Petković Komel 2021) je implementacija ene od različic AML. Vmesnik za evalvacijo
pametnih konstruktorjev za teorijo tipov zagotavlja jedro, ki je napisano v 3000
vrsticah OCaml programske kode in ustreza pravilom za kontekstno neodvisne teorije
tipov.
Primer formalizacije z Andromedo 2 se nahaja v dodatku B. Več primerov, kot na

primer definicijo računa konstrukcij, lahko najdemo v podmapi theories/ izvorne
kode za Andromedo.
Podamo tudi definicijo Harperjevega logičnega okvirja za enakost (Harper 2021)

v Andromedi 2 (§B).

https://github.com/Andromedans/andromeda/tree/master/theories

C.5. POGLAVJE 5: ZAKLJUČEK 189

Prispevki. AML je praktičen visokonivojski učinkovni programski jezik za konte-
kstno neodvisne teorije tipov, ki podpira razvoj dokazov v teorijah tipov, ki jih določi
uporabnik. Da povzamemo:

• vgradimo kontekstno neodvisne teorije tipov v programski jezik v stilu jezika
ML,

• razširimo dvosmerno preverjanje tipov v dvosmerno evalvacijo,
• pokažemo, kako uporabiti poganjalce za razvoj dokazov z lokalnimi hipotezami,
• priskrbimomehanizem za pravila, ki jih lahko definira uporabnik, ter mehanizem
za izpeljana pravila,

• implementiramo metaizreke standardne kontekstno neodvisne teorije tipov v
različici z učinki,

• implementiramo AML v dokazovalnem pomočniku Andromeda 2.

C.5 Poglavje 5: Zaključek
V poglavju 5 podamo pregled raziskovalnega področja in povezanih raziskav, ter
zarišemo okvirne smernice za nadaljnje delo.
V razdelku 5.1.1 razpravljamo o povezavi med končnimi teorijami tipov in ostalimi

splošnimi definicijami teorije tipov, ki so bile predlagane nedavno. Primerjamo
pristop AML z obstoječimi učinkovnimi metajeziki, z dokazovalnimi pomočniki,
ki jih uporabniki lahko razširijo, in z našim preteklim delom (§5.1.2). V razdelku
5.2 predlagamo naslednje korake za metateoretično študijo končnih teorij tipov in
kontekstno neodvisnih teorij tipov. Skiciramo tudi nekaj zanimivih razširitev. Na
koncu predlagamo teoretična in praktična vprašaja ter možne razširitve AML.

Appendix D

Bibliography

Aczel, Peter (1977). ‘An Introduction to Inductive Definitions’. In: Studies in Logic
and the Foundations of Mathematics 90. [] (cited on page 42).

Ahman, Danel and Andrej Bauer (2019). Runners in Action. arXiv: 1910.11629
[cs]. [] (cited on pages 26, 119, 126, 136, 152).

Ahman, Danel, Neil Ghani andGordonD. Plotkin (2016). ‘Dependent Types and Fibred
Computational Effects’. In: Foundations of Software Science and Computation
Structures. FoSSaCS’16. [] (cited on page 134).

Altenkirch, Thorsten, Paolo Capriotti and Nicolai Kraus (2016). ‘Extending Homo-
topy Type Theory with Strict Equality’. In: 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016). Vol. 62. Leibniz International Proceedings
in Informatics (LIPIcs). [] (cited on page 21).

Bauer, Andrej, Philipp G. Haselwarter and Anja Petković Komel (2021). The An-
dromeda Proof Assistant. [] (cited on pages 152, 188).

New Spaces in Mathematics (2021). New Spaces in Mathematics: Formal and Con-
ceptual Reflections. Vol. 1. [] (cited on page 161).

Angiuli, Carlo, Kuen-Bang Hou (Favonia) and Robert Harper (2018). ‘Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths and
Equalities’. In: 27th EACSL Annual Conference on Computer Science Logic (CSL
2018). Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). []
(cited on page 161).

Annenkov, Danil, Paolo Capriotti, Nicolai Kraus and Christian Sattler (2019). Two-
Level Type Theory and Applications. arXiv: 1705.03307 [cs]. [] (cited on
page 156).

Asperti, Andrea, Wilmer Ricciotti, Claudio Sacerdoti Coen and Enrico Tassi (2009).
‘Hints in Unification’. In: Theorem Proving in Higher Order Logics. Lecture Notes
in Computer Science 5674. [] (cited on page 26).

— (2012). A Bi-Directional Refinement Algorithm for the Calculus of (Co) Inductive
Constructions. arXiv: 1202.4905. [] (cited on pages 123, 160).

191

http://www.sciencedirect.com/science/article/pii/S0049237X08711200/pdf?md5=d682f3e5caf82ed1df33b89b71f6216a&pid=1-s2.0-S0049237X08711200-main.pdf&_valck=1
https://arxiv.org/abs/1910.11629
https://arxiv.org/abs/1910.11629
http://arxiv.org/abs/1910.11629
http://link.springer.com/chapter/10.1007/978-3-662-49630-5_3
http://drops.dagstuhl.de/opus/volltexte/2016/6561
https://www.andromeda-prover.org/
https://www.cambridge.org/core/books/new-spaces-in-mathematics/2AB1C65DD7F83F5BA2605E8411FDD271
http://drops.dagstuhl.de/opus/volltexte/2018/9673
https://arxiv.org/abs/1705.03307
http://arxiv.org/abs/1705.03307
http://link.springer.com/chapter/10.1007/978-3-642-03359-9_8
https://arxiv.org/abs/1202.4905
http://arxiv.org/abs/1202.4905

192 APPENDIX D. BIBLIOGRAPHY

Assaf, Ali, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek,
Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant and
Ronan Saillard (n.d.). Dedukti: A Logical Framework Based on the λΠ-Calculus
modulo Theory (cited on page 159).

Awodey, Steve (2014). ‘Structuralism, Invariance, and Univalence’. In: Philosophia
Mathematica 22.1. [] (cited on page 23).

Awodey, Steve and Andrej Bauer (2004). ‘Propositions as [Types]’. In: Journal of
Logic and Computation 14.4. [] (cited on page 25).

Awodey, Steve and Michael A. Warren (2007). ‘Homotopy Theoretic Models of
Identity Types’. In:Mathematical Proceedings of the Cambridge Philosophical
Society 146.1. arXiv: 0709.0248. [] (cited on page 22).

Barras, Bruno, Jean-Pierre Jouannaud, Pierre-Yves Strub and Qian Wang (2011).
‘CoQMTU: AHigher-Order Type Theory with a Predicative Hierarchy of Universes
Parametrized by a Decidable First-Order Theory.’ In: Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada. [] (cited on page 24).

Bauer, Andrej, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar and Christopher
A. Stone (2018). ‘Design and Implementation of the Andromeda Proof Assistant’.
In: in collab. with Michael Wagner. [] (cited on pages 25, 137, 159, 160).

Bauer, Andrej, Philipp G. Haselwarter and Peter LeFanu Lumsdaine (2020). A general
definition of dependent type theories. arXiv: 2009.05539 [math.LO] (cited on
pages 22, 33, 34, 36, 41, 155, 157, 161).

Bauer, Andrej, Philipp G. Haselwarter and Anja Petković (2020). ‘Equality Checking
for General Type Theories in Andromeda 2’. In: Mathematical Software – ICMS
2020. Lecture Notes in Computer Science (cited on pages 159, 160).

Bauer, Andrej and Anja Petković Komel (2021). An Extensible Equality Checking
Algorithm for Dependent Type Theories. arXiv: 2103.07397 [cs, math]. []
(cited on pages 159, 160).

Bauer, Andrej and Matija Pretnar (2014). ‘An Effect System for Algebraic Effects
and Handlers’. In: Logical Methods in Computer Science 10.4. [] (cited on
page 152).

— (2015). ‘Programming with Algebraic Effects and Handlers’. In: Journal of Logical
and Algebraic Methods in Programming. Special Issue: The 23rd NordicWorkshop
on Programming Theory (NWPT 2011) 84.1. [] (cited on pages 26, 129, 159).

Birkedal, Lars, Andreas Nuyts, G. A. Kavvos and Daniel Gratzer (2021). ‘Multimodal
Dependent Type Theory’. In: Logical Methods in Computer Science Volume 17,
Issue 3. [] (cited on page 161).

Boulier, Simon, Pierre-Marie Pédrot and Nicolas Tabareau (2017). ‘The next 700
Syntactical Models of Type Theory’. In: Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs. [] (cited on page 24).

Boulier, Simon Pierre (2018). ‘Extending Type Theory with Syntactic Models’. PhD
thesis. Ecole nationale supérieure Mines-Télécom Atlantique. [] (cited on
page 24).

https://doi.org/10.1093/philmat/nkt030
http://logcom.oxfordjournals.org/content/14/4/447.short
https://arxiv.org/abs/0709.0248
http://arxiv.org/abs/0709.0248
https://doi.org/10.1109/LICS.2011.37
http://drops.dagstuhl.de/opus/volltexte/2018/9857/
https://arxiv.org/abs/2009.05539
https://arxiv.org/abs/2103.07397
http://arxiv.org/abs/2103.07397
http://dx.doi.org/10.2168/LMCS-10(4:9)2014
http://www.sciencedirect.com/science/article/pii/S2352220814000194
https://lmcs.episciences.org/7713/pdf
https://www.xn--pdrot-bsa.fr/articles/cpp2017.pdf
https://tel.archives-ouvertes.fr/tel-02007839

193

Bruggeman, Carl, Oscar Waddell and R. Kent Dybvig (1996). ‘Representing Control
in the Presence of One-Shot Continuations’. In: ACM SIGPLAN Notices 31.5. []
(cited on page 137).

Cartmell, J.W. (1978). ‘Generalised Algebraic Theories and Contextual Categories’.
PhD thesis. University of Oxford. [] (cited on pages 20, 22, 155).

Castellan, Simon, Pierre Clairambault and Peter Dybjer (2017). ‘Undecidability of
Equality in the Free Locally Cartesian Closed Category (Extended Version)’. In:
Logical Methods in Computer Science Volume 13, Issue 4. [] (cited on page 21).

Cavallo, Evan, Anders Mörtberg and Andrew W. Swan (2020). ‘Unifying Cubical
Models of Univalent Type Theory’. In: 28th EACSL Annual Conference on
Computer Science Logic (CSL 2020). Vol. 152. Leibniz International Proceedings
in Informatics (LIPIcs). [] (cited on page 161).

The Coq development team (2021a). The Coq Proof Assistant. Version 8.13. []
(cited on pages 23, 157, 158).

— (2021b). Setting Properties of a Function’s Arguments. Version 8.13.2. [] (cited
on page 123).

— (2021c). Core Language. Version 8.13.2. [] (cited on page 158).
Cervesato, Iliano and Frank Pfenning (2002). ‘A Linear Logical Framework’. In:

Information and Computation 179.1. [] (cited on page 156).
Charguéraud, Arthur (2012). ‘The Locally Nameless Representation’. In: Journal of

Automated Reasoning 49 (cited on page 34).
Christiansen, David and Edwin Brady (2016). ‘Elaborator Reflection: Extending Idris
in Idris’. In: Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming. ICFP 2016. [] (cited on page 159).

Church, Alonzo (1940). ‘A Formulation of the Simple Theory of Types’. In: The
Journal of Symbolic Logic 5.2. JSTOR: 2266170 (cited on page 20).

Cockx, Jesper and Andreas Abel (2016). ‘Sprinkles of Extensionality for Your Vanilla
Type Theory’. TYPES 2016 (Novi Sad, Serbia). [] (cited on page 24).

Cockx, Jesper, Nicolas Tabareau and Théo Winterhalter (2020). ‘The Taming of the
Rew: A Type Theory with Computational Assumptions’. In: Proceedings of the
ACM on Programming Languages. POPL 2021. [] (cited on page 159).

Cohen, Cyril, Thierry Coquand, Simon Huber and Anders Mörtberg (2016). Cubical
Type Theory: A Constructive Interpretation of the Univalence Axiom. arXiv:
1611.02108 [cs, math]. [] (cited on pages 156, 161).

Constable, Robert L., Stuart F. Allen, H. M. Bromley, Walter Rance Cleaveland,
J. F. Cremer, Robert William Harper, Douglas J. Howe, Todd B. Knoblock, Nax
Paul Mendler, Prakash Panangaden, James T. Sasaki and Scott F. Smith (1986).
Implementing Mathematics with the Nuprl Proof Development System. [] (cited
on pages 20, 23, 157).

Coquand, Thierry (1996). ‘An Algorithm for Type-Checking Dependent Types’. In:
Science of Computer Programming 26.1. [] (cited on page 119).

Coquand, Thierry and Gérard Huet (1988). ‘The Calculus of Constructions’. In: Inf.
Comput. 76.2/3 (cited on pages 19, 20, 177).

https://doi.org/10.1145/249069.231395
https://doi.org/10.1145/249069.231395
http://jdc.math.uwo.ca/cartmell/generalised-algebraic-theories-and-contextual-categories-smallpdf.pdf
https://lmcs.episciences.org/4113/pdf
https://drops.dagstuhl.de/opus/volltexte/2020/11657
https://coq.inria.fr/
https://coq.inria.fr/refman/language/extensions/arguments-command.html#bidirectionality-hints
https://coq.inria.fr/distrib/current/refman/language/core/index.html
https://www.sciencedirect.com/science/article/pii/S0890540101929517
https://doi.org/10.1145/2951913.2951932
http://www.jstor.org/stable/2266170
http://www2.tcs.ifi.lmu.de/~abel/types16-cockx.pdf
https://hal.archives-ouvertes.fr/hal-02901011
https://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108
http://www.cs.cornell.edu/info/projects/nuprl/book/doc.html
http://www.sciencedirect.com/science/article/pii/0167642395000216

194 APPENDIX D. BIBLIOGRAPHY

Cousineau, Denis and Gilles Dowek (2007). ‘Embedding Pure Type Systems in
the Lambda-Pi-Calculus Modulo’. In: Typed Lambda Calculi and Applications.
Lecture Notes in Computer Science (cited on pages 156, 159).

Curien, Pierre-Louis (1993). ‘Substitution up to Isomorphism’. In: Fundam. Inf. 19.1-2
(cited on page 22).

Danvy, Olivier (1992). ‘Back to Direct Style’. In:ESOP ’92. Lecture Notes in Computer
Science (cited on page 26).

De Bruijn, Nicolaas G. (1972). ‘Lambda Calculus Notation with Nameless Dummies, a
Tool for Automatic Formula Manipulation, with Application to the Church-Rosser
Theorem’. In: Indagationes Mathematicae 75.5. [] (cited on page 34).

Delahaye, David (2000). ‘A Tactic Language for the System Coq’. In: Logic for
Programming and Automated Reasoning. Vol. 1955. Lecture Notes in Artificial
Intelligence. [] (cited on page 158).

De Moura, Leonardo, Soonho Kong, Jeremy Avigad, Floris van Doorn and Jakob von
Raumer (2015). ‘The Lean Theorem Prover (System Description)’. In: Automated
Deduction - CADE-25. Lecture Notes in Computer Science (cited on pages 23,
157).

Dunfield, Jana (2014). ‘Elaborating Intersection and Union Types’. In: Journal of
Functional Programming 24.2-3. [] (cited on page 156).

Dunfield, Jana and Neel Krishnaswami (2021). ‘Bidirectional Typing’. In: ACM
Computing Surveys 54.5. [] (cited on pages 119, 122).

Ebner, Gabriel, Sebastian Ullrich, Jared Roesch, Jeremy Avigad and Leonardo de
Moura (2017). ‘A Metaprogramming Framework for Formal Verification’. In:
Proceedings of the ACM on Programming Languages 1 (ICFP). [] (cited on
page 159).

Fiore, Marcelo and Ola Mahmoud (2014). Functorial Semantics of Second-Order
Algebraic Theories. arXiv: 1401.4697 [cs, math]. [] (cited on page 155).

FSF (2021a). AUCTeX. Version 13.0.11. Free Software Foundation, Inc. (cited on
page 10).

— (2021b). GNU Emacs. Version 28.0.50. Free Software Foundation, Inc. (cited on
page 10).

Geuvers, Herman, Robbert Krebbers, James McKinna and Freek Wiedijk (2010).
‘Pure Type Systems without Explicit Contexts’. In: Electronic Proceedings in
Theoretical Computer Science 34 (cited on pages 75, 155, 181).

Girard, Jean-Yves (1972). ‘Interprétation Fonctionelle et Élimination Des Coupures
de l’arithmétique d’ordre Supérieur’. PhD thesis. Université Paris VII (cited on
page 20).

Gonthier, Georges, Andrea Asperti, JeremyAvigad, Yves Bertot, Cyril Cohen, François
Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha,
Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi and Laurent Théry
(2013). ‘A Machine-Checked Proof of the Odd Order Theorem’. In: Interactive
Theorem Proving. Lecture Notes in Computer Science (cited on page 23).

http://www.sciencedirect.com/science/article/pii/1385725872900340
http://link.springer.com/10.1007/3-540-44404-1_7
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/abs/elaborating-intersection-and-union-types/F5922703222B5F9C04C46BAE7AB8F7EB
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3110278
https://arxiv.org/abs/1401.4697
http://arxiv.org/abs/1401.4697

195

Gonthier, Georges, Assia Mahboubi and Enrico Tassi (2015). A Small Scale Reflection
Extension for the Coq System. report. Inria Saclay Ile de France. [] (cited on
page 23).

Gordon, Mike (2000). ‘From LCF to HOL: A Short History.’ In: Proof, Language,
and Interaction. [] (cited on page 25).

Gordon, Mike, Robin Milner, Lockwood Morris, Malcolm Newey and Christopher
Wadsworth (1978). ‘AMetalanguage for Interactive Proof in LCF’. In: Proceedings
of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. [] (cited on pages 20, 157).

Gordon, Mike, Robin Milner and Christopher Wadsworth (1979). Edinburgh LCF: A
Mechanised Logic of Computation. Lecture Notes in Computer Science 78. []
(cited on pages 25, 158).

Gratzer, Daniel (2021). Normalization for Multimodal Type Theory. arXiv: 2106.
01414 [cs]. [] (cited on page 161).

Gratzer, Daniel, Jonathan Sterling and Lars Birkedal (2019). ‘Implementing a Modal
Dependent Type Theory’. In: Proceedings of the ACM on Programming Languages
3 (ICFP). [] (cited on page 162).

Harper, Robert (1985). ‘Aspects of the Implementation of Type Theory’. PhD thesis.
Cornell University. [] (cited on page 121).

— (2021). An Equational Logical Framework for Type Theories. arXiv: 2106.01484
[cs, math]. [] (cited on pages 30, 156, 157, 161, 165, 188).

Harper, Robert, Bruce F. Duba and David Macqueen (1993). ‘Typing First-Class
Continuations in ML†’. In: Journal of Functional Programming 3.4. [] (cited
on page 158).

Harper, Robert, Furio Honsell and Gordon Plotkin (1993). ‘A Framework for Defining
Logics’. In: Journal of the ACM 40.1. [] (cited on pages 25, 155, 156).

Harper, Robert and Robert Pollack (1991). ‘Type Checking with Universes’. In:
Theoretical computer science 89.1. [] (cited on pages 124, 157).

Herbelin, Hugo (2015). ‘ADependently-Typed Construction of Semi-Simplicial Types’.
In: Mathematical Structures in Computer Science 25.05. [] (cited on page 21).

Hofmann, Martin (1994). ‘On the Interpretation of Type Theory in Locally Cartesian
Closed Categories’. In: CSL (cited on page 22).

— (1997). Extensional Constructs in Intensional Type Theory. CPHC/BCS Distin-
guished Dissertations. [] (cited on pages 21, 24).

Hofmann, Martin and Thomas Streicher (1994). ‘The Groupoid Model Refutes
Uniqueness of Identity Proofs’. In: Proceedings Ninth Annual IEEE Symposium
on Logic in Computer Science. LiCS94 (cited on page 20).

Huet, Gérard (1988). Extending the Calculus of Constructions with Type:Type (cited
on page 26).

The Isabelle development team (2016). Isabelle. [] (cited on page 157).
Isaev, Valery (2016). Algebraic Presentations of Dependent Type Theories. arXiv:
1602.08504 [cs, math]. [] (cited on page 155).

Johnstone, Peter T. (2003). Sketches of an Elephant: A Topos Theory Compendium
(cited on page 18).

https://hal.inria.fr/inria-00258384/document
https://books.google.com/books?hl=en&lr=&id=g8DEO9DwmZoC&oi=fnd&pg=PA169&dq=%22are+interpreted+as+Scott+domains+(CPOs)+and+the+logic+is+intended%22+%22and+is+described+by+Milner+as+follows%22+%22abbreviates+%E2%80%9CHigher+Order%22+%22of+correctness+of+a+compiling+algorithm+for+a+simple+imperative%22+&ots=_l25gjpD5J&sig=SxBmA5FCo9qxuuhBIc6jkdBJ010
http://dl.acm.org/citation.cfm?id=512773
https://doi.org/10.1007/3-540-09724-4_1
https://arxiv.org/abs/2106.01414
https://arxiv.org/abs/2106.01414
http://arxiv.org/abs/2106.01414
https://doi.org/10.1145/3341711
https://hdl.handle.net/1813/6515
https://arxiv.org/abs/2106.01484
https://arxiv.org/abs/2106.01484
http://arxiv.org/abs/2106.01484
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/abs/typing-firstclass-continuations-in-ml/8E466C17B3C1EB69FF426EDE1BE750FC
http://dl.acm.org/citation.cfm?id=138060
http://www.sciencedirect.com/science/article/pii/030439759090108T
http://www.journals.cambridge.org/abstract_S0960129514000528
http://link.springer.com/10.1007/978-1-4471-0963-1
https://isabelle.in.tum.de/
https://arxiv.org/abs/1602.08504
http://arxiv.org/abs/1602.08504

196 APPENDIX D. BIBLIOGRAPHY

Kaiser, Jan-Oliver, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas and Derek
Dreyer (2018). ‘Mtac2: Typed Tactics for Backward Reasoning in Coq’. In:
Proceedings of the ACM on Programming Languages 2 (ICFP). [] (cited on
page 158).

Kammar, Ohad (2014). ‘Algebraic Theory of Type-and-Effect Systems’. PhD thesis.
[] (cited on page 161).

Kapulkin, Chris and Peter LeFanu Lumsdaine (2012). The Simplicial Model of
Univalent Foundations (after Voevodsky). arXiv: 1211.2851 [math]. [] (cited
on page 21).

Karachalias, Georgios, Filip Koprivec, Matija Pretnar and Tom Schrijvers (2021).
‘Efficient Compilation of Algebraic Effect Handlers’. In: Proceedings of the ACM
on Programming Languages 5 (OOPSLA). [] (cited on page 137).

Kirchner, Florent and César Muñoz (2010). ‘The Proof Monad’. In: The Journal of
Logic and Algebraic Programming 79.3–5. [] (cited on page 26).

Kiselyov, Oleg and K. C. Sivaramakrishnan (2018). ‘Eff Directly in OCaml’. In:
Electronic Proceedings in Theoretical Computer Science 285. arXiv: 1812.11664.
[] (cited on page 162).

Lennon-Bertrand, Meven (2021). ‘Complete Bidirectional Typing for the Calculus
of Inductive Constructions’. In: 12th International Conference on Interactive
Theorem Proving (ITP 2021). Vol. 193. Leibniz International Proceedings in
Informatics (LIPIcs). [] (cited on page 122).

Leroy, Xavier, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and
Jérôme Vouillon (2021). The OCaml System, Release 4.12.0. [] (cited on
page 158).

Levy, Paul Blain, John Power and Hayo Thielecke (2003). ‘Modelling Environments in
Call-by-Value Programming Languages’. In: Information and Computation 185.2.
[] (cited on pages 133, 185).

Lukšič, Žiga (2020). ‘Applications ofAlgebraic Effect Theories’. PhD thesis. University
of Ljubljana. [] (cited on pages 152, 161).

Luo, Zhaohui (1990). ‘An Extended Calculus of Constructions’. PhD thesis. University
of Edinburgh (cited on page 157).

Madsen, Lars and Peter R. Wilson (2021). Memoir. Version v3.7o. [] (cited on
page 10).

Mahboubi, Assia and Enrico Tassi (2013). ‘Canonical Structures for the Working Coq
User’. In: Interactive Theorem Proving. Lecture Notes in Computer Science (cited
on pages 26, 129).

Martin-Löf, Per (1979). ‘Constructive Mathematics and Computer Programming’.
In: Logic, Methodology and Philosophy of Science VI, Proceedings of the Sixth
International Congress, Hannover 1979. Vol. 104. Studies in Logic and the
Foundations of Mathematics. [] (cited on page 20).

— (1982). ‘Constructive Mathematics and Computer Programming’. In: Studies in
Logic and the Foundations of Mathematics. Vol. Volume 104. [] (cited on
pages 20, 126, 157).

http://dl.acm.org/citation.cfm?doid=3243631.3236773
http://www.era.lib.ed.ac.uk/handle/1842/8910
https://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1211.2851
https://doi.org/10.1145/3485479
http://www.sciencedirect.com/science/article/pii/S1567832610000068
https://arxiv.org/abs/1812.11664
http://arxiv.org/abs/1812.11664
https://drops.dagstuhl.de/opus/volltexte/2021/13919
https://ocaml.org/manual/
https://linkinghub.elsevier.com/retrieve/pii/S0890540103000889
https://repozitorij.uni-lj.si/Dokument.php?id=137124&lang=eng
https://www.ctan.org/pkg/memoir
http://dx.doi.org/10.1016/S0049-237X(09)70189-2
http://archive-pml.github.io/martin-lof/pdfs/Constructive-mathematics-and-computer-programming-1982.pdf

197

— (1998). ‘An Intuitionistic Theory of Types’. In: Twenty-Five Years of Constructive
Type Theory. Oxford Logic Guides 36 (cited on pages 19, 20, 177).

McBride, Conor (2018). Basics of Bidirectionalism. pigworker in a space. [] (cited
on page 122).

McKinna, James and Robert Pollack (1993). ‘Pure Type Systems Formalized’. In:
International Conference on Typed Lambda Calculi and Applications (TLCA).
Vol. 664. Lecture Notes in Computer Science (cited on page 34).

Milner, Robin (1972). Logic for Computable Functions : Description of a Machine
Implementation. Defense Technical Information Center. [] (cited on page 20).

— (1978). ‘A Theory of Type Polymorphism in Programming’. In: Journal of
Computer and System Sciences 17.3. [] (cited on pages 20, 134).

Milner, Robin, Mads Tofte and Robert Harper (1990). The Definition of Standard ML
(cited on page 145).

Norell, Ulf (2007). ‘Towards a Practical Programming Language Based on Dependent
Type Theory’. PhD thesis. Chalmers University of Technology (cited on pages 23,
123).

— (2009). ‘Dependently Typed Programming in Agda’. In: Advanced Functional
Programming: 6th International School, AFP 2008, Heijen, The Netherlands,
May 2008, Revised Lectures. Lecture Notes in Computer Science. [] (cited on
page 157).

Pédrot, Pierre-Marie (2019). ‘Ltac2: Tactical Warfare’. In: CoqPL’19 (cited on
pages 26, 158).

Pédrot, Pierre-Marie and Nicolas Tabareau (2017). ‘An Effectful Way to Eliminate
Addiction to Dependence’. In: [] (cited on page 24).

— (2019). ‘The Fire Triangle: How to Mix Substitution, Dependent Elimination, and
Effects’. In: Proceedings of the ACM on Programming Languages 4 (POPL). []
(cited on page 134).

Petković Komel, Anja (2021). ‘Towards an Elaboration Theorem’. Invited Talk.
HoTT/UF 2021 (cited on page 161).

Pfenning, Frank (2001). ‘Logical Frameworks’. In:Handbook of Automated Reasoning
(in 2 volumes) (cited on page 156).

— (2004). ‘Lecture Notes on Bidirectional Type Checking’. [] (cited on page 122).
Pfenning, Frank and Carsten Schürmann (1999). ‘System Description: Twelf — A
Meta-Logical Framework for Deductive Systems’. In: Automated Deduction —
CADE-16. Lecture Notes in Computer Science (cited on pages 156, 159).

Pientka, Brigitte (2015).Mechanizing Types and Programming Languages: A Com-
panion. [] (cited on page 156).

Pientka, Brigitte and Jana Dunfield (2010). ‘Beluga: A Framework for Programming
and Reasoning with Deductive Systems (System Description)’. In: Automated
Reasoning. [] (cited on pages 156, 159).

Pierce, Benjamin C. (2002). Types and Programming Languages (cited on page 121).
— (2005).Advanced Topics in Types and Programming Languages (cited on page 121).

https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
http://www.dtic.mil/docs/citations/AD0785072
https://linkinghub.elsevier.com/retrieve/pii/0022000078900144
https://doi.org/10.1007/978-3-642-04652-0_5
https://hal.inria.fr/hal-01441829/
https://doi.org/10.1145/3371126
https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://complogic.cs.mcgill.ca/beluga/meta.pdf
http://link.springer.com/chapter/10.1007/978-3-642-14203-1_2

198 APPENDIX D. BIBLIOGRAPHY

Pierce, Benjamin C. and David N. Turner (1998). ‘Local Type Inference’. In: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),
San Diego, California (cited on page 122).

Pinckney, Donald, Arjun Guha and Yuriy Brun (2020). ‘Wasm/k: Delimited Continu-
ations forWebAssembly’. In:Proceedings of the 16th ACM SIGPLAN International
Symposium on Dynamic Languages. DLS 2020. [] (cited on page 162).

Plotkin, Gordon D. and John Power (2003). ‘Algebraic Operations and Generic Effects’.
In: Applied Categorical Structures 11.1. [] (cited on page 129).

Plotkin, Gordon D. and Matija Pretnar (2013). ‘Handling Algebraic Effects’. In:
Logical Methods in Computer Science Volume 9, Issue 4. [] (cited on page 161).

Pollack, Robert (1992). ‘Implicit Syntax’. In: Informal Proceedings of First Workshop
on Logical Frameworks (cited on page 124).

Pretnar, Matija (2010). ‘Logic and Handling of Algebraic Effects’. PhD thesis.
University of Edinburgh. [] (cited on pages 151, 152).

— (2015). ‘An Introduction to Algebraic Effects and Handlers. Invited Tutorial Paper’.
In: Electronic Notes in Theoretical Computer Science 319. [] (cited on page 126).

Rémy, Didier (2015). Mathpartir. Version 1.3.1 (cited on page 10).
Reppy, John H. (1991). ‘CML: A Higher Concurrent Language’. In: Proceedings of

the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation. PLDI ’91. [] (cited on page 158).

Reynolds, John C. (1974). ‘Towards a Theory of Type Structure’. In: Colloque Sur La
Programmation, Paris, France. Vol. 19. Lecture Notes in Computer Science (cited
on page 20).

Russell, Bertrand (1903). The Principles of Mathematics. [] (cited on page 19).
— (1908). ‘Mathematical Logic as Based on the Theory of Types’. In: American

Journal of Mathematics 30.3. JSTOR: 2369948 (cited on page 19).
Saïbi, Amokrane (1997). ‘Typing Algorithm in Type Theory with Inheritance’. In:

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’97. [] (cited on page 160).

Scholze, Peter (2019). Lectures on Condensed Mathematics (cited on page 161).
Schreiber, Urs and Michael Shulman (2014). ‘Quantum Gauge Field Theory in
Cohesive Homotopy Type Theory’. In: Electronic Proceedings in Theoretical
Computer Science 158. arXiv: 1408.0054. [] (cited on page 161).

Schuster, Philipp, Jonathan Immanuel Brachthäuser and Klaus Ostermann (2020).
‘Compiling Effect Handlers in Capability-Passing Style’. In: Proceedings of the
ACM on Programming Languages 4 (ICFP). [] (cited on page 137).

Seely, Robert A. G. (1984). ‘Locally Cartesian Closed Categories and Type Theory’.
In: Mathematical Proceedings of the Cambridge Philosophical Society 95.01. []
(cited on pages 20, 22).

Shulman, Mike (2014). Homotopy Type Theory Should Eat Itself (but so Far, It’s Too
Big to Swallow). Homotopy Type Theory. [] (cited on page 21).

Sivaramakrishnan, KC, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer and Anil
Madhavapeddy (2021). ‘Retrofitting Effect Handlers onto OCaml’. In: Proceedings

https://doi.org/10.1145/3426422.3426978
http://link.springer.com/article/10.1023/A:1023064908962
https://lmcs.episciences.org/705/pdf
http://www.era.lib.ed.ac.uk/handle/1842/4611
https://linkinghub.elsevier.com/retrieve/pii/S1571066115000705
https://doi.org/10.1145/113445.113470
http://fair-use.org/bertrand-russell/the-principles-of-mathematics/
http://www.jstor.org/stable/2369948
https://doi.org/10.1145/263699.263742
https://arxiv.org/abs/1408.0054
http://arxiv.org/abs/1408.0054
https://doi.org/10.1145/3408975
http://www.journals.cambridge.org/abstract_S0305004100061284
http://www.journals.cambridge.org/abstract_S0305004100061284
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/

199

of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. PLDI 2021. [] (cited on pages 137, 158, 162).

Sozeau, Matthieu and Nicolas Oury (2008). ‘First-Class Type Classes’. In: Theorem
Proving in Higher Order Logics. Lecture Notes in Computer Science (cited on
page 129).

Spiwack, Arnaud (2010). ‘An Abstract Type for Constructing Tactics in Coq’. In:
Proof Search in Type Theory. [] (cited on pages 26, 158).

Streicher, Thomas (1991). Semantics of Type Theory. [] (cited on page 157).
— (2011). ‘A Model of Type Theory in Simplicial Sets’. [] (cited on page 21).
Swamy, Nikhil, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue and Santiago Zanella-Béguelin
(2016). ‘Dependent Types andMulti-Monadic Effects in F*’. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’16. [] (cited on page 134).

Tarski, Alfred (1955). ‘A lattice-theoretical fixpoint theorem and its applications’. In:
Pacific Journal of Mathematics 5.2 (cited on page 42).

Uemura, Taichi (2019). A General Framework for the Semantics of Type Theory. arXiv:
1904.04097 [cs, math]. [] (cited on pages 156, 157, 161).

Univalent Foundations Program, The (2013). Homotopy Type Theory: Univalent
Foundations of Mathematics. [] (cited on page 21).

Van der Walt, Paul and Wouter Swierstra (2013). ‘Engineering Proof by Reflection
in Agda’. In: Implementation and Application of Functional Languages. Lecture
Notes in Computer Science (cited on page 159).

Voevodsky, Vladimir (2006). ‘A Very Short Note on Homotopy λ-Calculus’ (cited on
page 22).

— (2013). ‘HTS - A Simple Type System with Two Identity Types’. [] (cited on
pages 21, 156).

— (2014). The Equivalence Axiom and Univalent Models of Type Theory. (Talk at
CMU on February 4, 2010). arXiv: 1402.5556 [math]. [] (cited on page 21).

Voevodsky, Vladimir, Benedikt Ahrens, Daniel Grayson et al. (n.d.). UniMath
— a Computer-Checked Library of Univalent Mathematics. available at ht-
tps://github.com/UniMath/UniMath. [] (cited on page 24).

Watkins, Kevin, Iliano Cervesato, Frank Pfenning and David Walker (2003). A
Concurrent Logical Framework I: Judgments and Properties. Carnegie Mellon
University. [] (cited on page 156).

Ziliani, Beta, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar Nanevski and
Viktor Vafeiadis (2013). ‘Mtac: A Monad for Typed Tactic Programming in Coq’.
In: ACM SIGPLAN Notices 48.9. [] (cited on page 26).

Ziliani, Beta and Matthieu Sozeau (2015). ‘A Unification Algorithm for Coq Featuring
Universe Polymorphism and Overloading’. In: Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming. ICFP 2015. []
(cited on page 26).

https://doi.org/10.1145/3453483.3454039
https://hal.inria.fr/inria-00502500
http://link.springer.com/10.1007/978-1-4612-0433-6
http://www.mathematik.tu-darmstadt.de/~streicher/sstt.pdf
https://doi.org/10.1145/2837614.2837655
https://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
https://homotopytypetheory.org/book
https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf
https://arxiv.org/abs/1402.5556
http://arxiv.org/abs/1402.5556
https://github.com/UniMath/UniMath
https://apps.dtic.mil/sti/citations/ADA418517
https://doi.org/10.1145/2544174.2500579
https://doi.org/10.1145/2784731.2784751
https://doi.org/10.1145/2784731.2784751

	Abstract
	Izvleček
	Contents
	List of Figures
	Introduction
	Approaches to Type Theory
	On the mathematical study of type theory
	Type theory and proof assistants
	Computer support for new type theories.
	Requirements for user definable type theories
	Effects in proof assistants

	Aim of the thesis
	Overview of the thesis
	Chapter 2: Finitary type theories
	Chapter 3: Context-free type theories
	Chapter 4: An effectful metalanguage for type theories
	Chapter 5: Conclusion

	Finitary type theories
	Finitary type theories
	Raw syntax
	Deductive systems
	Raw rules and type theories
	Finitary rules and type theories

	Metatheorems
	Metatheorems about raw theories
	Metatheorems about finitary theories
	Metatheorems about standard theories

	Context-free type theories
	Context-free finitary type theories
	Raw syntax of context-free type theories
	Context-free rules and type theories

	Metatheorems about context-free theories
	Metatheorems about context-free raw theories
	Metatheorems about context-free finitary theories
	Metatheorems about context-free standard theories
	Special metatheorems about context-free theories

	A correspondence between theories with and without contexts
	Translation from cf-theories to tt-theories
	Translation from tt-theories to cf-theories

	An effectful metalanguage for type theories
	AML preliminaries
	Bidirectional evaluation
	Operations and runners

	AML syntax
	AML operational semantics
	General programming
	Type theory
	Toplevel

	Standard derived forms
	Rule application and formation
	Handling syntactic equality
	Recovering λCF-Lambda

	On soundness & completeness
	AML in Andromeda 2

	Conclusion
	Related work
	Finitary type theories
	Andromeda metalanguage

	Future work

	AML implementation of the boundary conversion lemma
	Equational LF in Andromeda 2
	Equational LF rules
	Equational LF examples

	Razširjeni povzetek v slovenščini
	Poglavje 1: Uvod
	Poglavje 2: Končne teorije tipov
	Poglavje 3: Kontekstno neodvisne teorije tipov
	Poglavje 4: Učinkovni metajezik za teorije tipov
	Poglavje 5: Zaključek

	Bibliography

