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1. As you may have noticed, I am not Philipp. Since we are working on very
similar things, we decided to give this talk together.

2. We would like to talk about formalisation of mathematics - WHY and
HOW we do this. Let us first shortly comment on the ”WHY” part.



• Theorems should be true.
• But are they always?
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1. So, in principle we agree, that theorems should be true. But are they
always true?

2. Let us remind ourselves how we make sure published papers are
mistakes-free. We have reviewers, who go over every step of the proof
carefully and try to find a mistake in the result. For big results, we may
have 10 or more reviewers, but it boils down to people checking other
people’s work. This sounds bad.

3. Mistakes happen not just to students, but to big shot mathematicians
too. One of the big shots this happened to was Vladimir Voevodsky.
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Figure: Vladimir Voevodsky, 1966 - 2017
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1. Vladimir Voevodsky was a russian mathematician, who got a Fields medal
in 2002 for his proof of Milnor’s Conjecture.

2. In 1991 he defined ∞-groupoids and proved they constitute models for
homotopy types

3. In 2003, twelve years after the proof was published in English, a preprint
appeared on the web in which his author, Carlos Simpson, very politely
claimed that he has constructed a counter-example to the theorem. Since
he was sure there was no mistake, Vladimir ignored that. In the Fall of
2013, he suddenly understood that Carlos Simpson was correct.

4. Vladimir was the founder of Univalent Mathematics, one of the basics for
formalizing maths in computers.



Other reasons
• combinatorial proofs

• mathematical view of computing
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Finish at: 4 min
1. There are several combinatorial proofs, which are solved by ”manually”

checking lots of special cases. The most famous one is the proof of the 4
color theorem. There were many, who doubted its correctness, especially
because the computer checked a lot of configurations.

2. Another very wide range of motivating examples would be the
mathematical view of computing. Once we go into that, we can mention
self-driving cars, which we want to make sure is bug-free, drones, rockets
if you want.
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Computer representation of mathematical constructions
Want: (1) precise (2) capture mathematical practice (3) “compute”

(a) too informal for (most) humans (b) too informal for computers

syms x
l o g i c a l (1 < 2 & x == x )

ans =
l o g i c a l 1

i sAlways ( s i n ( x )/ cos ( x ) == tan ( x ))

ans =
l o g i c a l 1

(c) Matlab – computes, but no proofs

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :
odd ⋆ |G| → solvable G.

Proof. exact: (minSimpleOdd_ind no_minSimple_odd_group).
Qed.

Theorem simple_odd_group_prime (gT : finGroupType)
(G : {group gT}) :

odd ⋆ |G| → simple G → prime ⋆ |G|.
Proof. exact: (minSimpleOdd_prime no_minSimple_odd_group).
Qed.

(d) Type Theory ✓
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1. 6 Thank you Anja. A language for formalised mathematics has to be precise. It
should also capture mathematical practice, meaning that everyday mathematical
concepts should be easy to represent rather than encoded. And of course we
want the computer to do some of the work for us. After all, automation is where
computers shine. I will call a “computer system for formalised maths” a “proof
assistant”. If I use words you never heard before please interrupt me. pause

2. Here we have an example of “everyday mathematical practice” at work. And in
fact, this is too informal even for non-expert humans.

3. By the way, your jobs are safe for now. The creative part of maths still needs to
be done by humans. pause

4. This is a theorem in Rudin’s book on analysis. It’s readable by non-experts, but
it won’t do for computers, because the Latex code is not semantic: it relies on
the reader’s experience to convey the meaning of “lim sup” and “implies”, etc.
It is also incomplete, just look at these dots here in line one, and this hand-wavy
“of course” business in line two of the proof. pause

5. Maybe now you’re thinking, “ah but Matlab can do computer maths”. Here are
some simple facts, checked by Matlab. But the result here is just a “logical 1”.
There is no proof explaining why these facts are true. So while Matlab and
similar systems can compute, they’re not proof assistants. pause

6. Finally here we have a statement of two theorems that a computer can
understand. Lets read the first one. The Feit Thompson theorem states that a
for a group G of finite type, if the order of G is odd, then G is solvable. And
there’s a proof here too, in fact we just apply a lemma, and the computer
checked that all steps of deduction in the proof and the proof of the lemma and
so on were correct. What you see here is a proof assistant based on a formal
language called type theory.

7. Type theory is not the only choice possible, but it’s one of the most successful
ones, and it’s the one we study, so let’s have a look at it.
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The language of type theory

• base types: ℕ, ⊥, ⊤, ℝ, Type, …. Write ⊢ 𝐴 type.

• type formers: Given ⊢ 𝐴 type and ⊢ 𝐵 type, can form
⊢ 𝐴 × 𝐵 type , ⊢ 𝐴 + 𝐵 type , ⊢ Π(𝑖∶ℕ)𝐵𝑖 type ,
⊢ ℕ → ℝ type , …

• the terms of a type are the “elements”
Eg. “42 is a term of type ℕ” is written as ⊢ 42 ∶ ℕ.
Write “given a 𝑛 ∶ ℕ, 𝑣 is a vector in ℝ𝑛” as 𝑛 ∶ ℕ ⊢ 𝑥 ∶ ℝ𝑛

• vectors form a dependent type: ℝ𝑛 mentions 𝑛, a term of
type ℕ.

• dependency is common : consider 𝒞([𝑎, 𝑏], ℝ). Here, a pair of
terms ⟨𝑎, 𝑏⟩ ∶ ℝ × ℝ occurs in the type!

• a dependent type is a Type-valued function:
⊢ 𝒞([−, −], ℝ) ∶ ℝ × ℝ → Type
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1. 9 First we need to represent the objects of mathematical study. These objects
are called types. There’s the type of natural numbers, and an empty type, a
singleton type, the real numbers. There’s even a type of all types, up to some
cardinal if you’re a set theorist. These are what we call the “base types”.

2. We also like to combine existing types and construct new ones out of them:
given two types we can take their cartesian product products A times B, we can
take disjoint unions, written A plus B. We can take the product of all 𝐵𝑖s over
some indexing type, here the natural numbers, and we can consider the type of
functions from A to B.

3. Now that we have types, we can think about the bits that make up a specific
type. We call these bits terms. They’re a bit like elements, but a term is always
a term of a fixed type. For example, “42 is a natural number” becomes “42 is a
term of type N”, and we can talk about vectors in ℝ𝑛 as terms of type ℝ𝑛.

4. The example of vectors is interesting because it showcases a common theme in
mathematical practice: The type we construct, ℝ𝑛, is dependent on 𝑛, which is
itself a term of type natural number.

5. To give you another example of where dependency occurs, consider the type of
continuous functions from the interval [𝑎, 𝑏] to the reals. This type mentions
the pair 𝑎 and 𝑏, which is a term of type R times R.

6. Our second requirement for a formal language was that it should model
mathematical practice. Type theory fits this requirement, it has a notion of
dependency built in.

7. In fact, a dependent type is a type valued function. The type of continuous
functions from some interval to the reals can be seen as a function that’s
waiting to fix the endpoints of the interval in questions.
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1. 9 First we need to represent the objects of mathematical study. These objects
are called types. There’s the type of natural numbers, and an empty type, a
singleton type, the real numbers. There’s even a type of all types, up to some
cardinal if you’re a set theorist. These are what we call the “base types”.

2. We also like to combine existing types and construct new ones out of them:
given two types we can take their cartesian product products A times B, we can
take disjoint unions, written A plus B. We can take the product of all 𝐵𝑖s over
some indexing type, here the natural numbers, and we can consider the type of
functions from A to B.

3. Now that we have types, we can think about the bits that make up a specific
type. We call these bits terms. They’re a bit like elements, but a term is always
a term of a fixed type. For example, “42 is a natural number” becomes “42 is a
term of type N”, and we can talk about vectors in ℝ𝑛 as terms of type ℝ𝑛.

4. The example of vectors is interesting because it showcases a common theme in
mathematical practice: The type we construct, ℝ𝑛, is dependent on 𝑛, which is
itself a term of type natural number.

5. To give you another example of where dependency occurs, consider the type of
continuous functions from the interval [𝑎, 𝑏] to the reals. This type mentions
the pair 𝑎 and 𝑏, which is a term of type R times R.

6. Our second requirement for a formal language was that it should model
mathematical practice. Type theory fits this requirement, it has a notion of
dependency built in.

7. In fact, a dependent type is a type valued function. The type of continuous
functions from some interval to the reals can be seen as a function that’s
waiting to fix the endpoints of the interval in questions.
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Types and their terms

How do we construct terms of a type? We specify the generators!
We call them “constructors” ; defined type by type, for example

• ⊥ is the empty type : no constructors

• ⊤ is the singleton : a single constructor ∗ ∶ ⊤
• 0 ∶ ℕ. Given some 𝑚 ∶ ℕ, we can form 𝑚 + 1 ∶ ℕ.
• If 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵, then ⟨𝑎, 𝑏⟩ ∶ 𝐴 × 𝐵.
• Functions? Assume a variable 𝑥 of type 𝐴 and form a term

𝑒 ∶ 𝐵. That’s a function 𝜆𝑥∶𝐴 . 𝑒 ∶ 𝐴 → 𝐵
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1. 11 Let’s quickly talk about how we can construct terms. Each type has
its own ideas about what terms should this type should look like. Think
of it like this: every type comes with its own generators. Because we like
to build things, we call these generators “constructors”.

2. For example the empty type has no constructors. It’s empty.
3. The singleton type has a single constructor, written as star here.
4. The natural numbers have two constructors: zero, and, if we already have

a natural number m, we can form its successor, m plus one.
5. To form a term in the product type, we need a term in each component,

an 𝑎 and a 𝑏.
6. To form a function, we can assume that we have some variable in the

domain, and use that variable to construct a term in the codomain.
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Constructions are good, but where are the theorems?

Insight (Curry, Howard, ca 1960): propositions are types!
And a proof of a proposition 𝐴 is... a term 𝑡 ∶ 𝐴.

A dictionary:

English Type Theory
True ⊤
False ⊥
𝐴 and 𝐵 𝐴 × 𝐵
𝐴 or 𝐵 𝐴 + 𝐵
If 𝐴 then 𝐵 𝐴 → 𝐵
𝐴 if and only if 𝐵 (𝐴 → 𝐵) × (𝐵 → 𝐴)
Not 𝐴 𝐴 → ⊥
Predicate on 𝐴 𝐴 → Type
For all 𝑥∶𝐴, 𝐵 Π𝑥∶𝐴𝐵
There exists 𝑥∶𝐴 s.t. 𝐵 Σ𝑥∶𝐴𝐵

8 / 11

1. 14 Now we have seen how mathematical constructions are represented as
types. But the original question that Anja asked was about using a
computer to check the proofs of theorems. We haven’t seen any logic,
any propositions yet in type theory. So how do we represent theorems and
proofs in type theory? pause

2. The key insight that Curry and Howard had was that we already have
everything we need : propositions are types. What I mean by that is that
we can take the usual notion of logic you are acquainted with and
interpret it in type theory.

3. Let’s see how this works. The propositions are types, and a proof of a
proposition 𝐴 is simply a term 𝑡 of inhabiting that type. pause

4. Here’s a little dictionary that explains how to translate a logical
statement into type theory. The idea is the following: To prove the
conjunction of 𝐴 and 𝐵, we have to provide a proof for 𝐴, and a proof
for 𝐵. In other words, we construct a pair of proofs. But that’s just a
term of type 𝐴 times 𝐵. If, for example, we want to give a proof that 𝐴
implies 𝐵, we have to construct a proof of 𝐵, assuming that we have a
proof of 𝐴. That’s exactly a function from 𝐴 to 𝐵. Truth is interpreted
as the singleton type, falsehood as the empty type.

5. We also find dependent types again, namely in the form of predicates.
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How do we now prove stuff?

¬(𝑃 ∨ 𝑄) ⇒ (¬𝑃 ∧ ¬𝑄)

9 / 11

Finish demo by: 19 min
1. this dictionary shows that we introduced proof relevance: it matters what

construction we used, and our implications are now functions!
2. we need to change the way we view propositions, not just what is valid,

but what we can prove
3. there are truncation details with disjunction, but let us not get into that
4. how do we actually prove stuff? By constructing proof terms
5. exercise: ((𝑃 + 𝑄) → ∅) → ((𝑃 → ∅) × (𝑄 → ∅)) First explicitly and

then using tactics
6. demonstrate a mistake in coq
7. fail (checks something actually fails)
8. a real example?
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Cute, but what can you do?

Some cool formalisation projects using the Coq proof assistant:
• formalise some serious maths : Odd order theorem (part of

classification of finite simple groups), four colour theorem, lots
of homotopy theory, ...

• verify computer programs : a C compiler, research papers
about programming languages, crypto protocols, proof
assistants, ...

Other cool things using type theory:
• lots of models – lots of type theories!
• eg. homotopy type theory – talk to Egbert here
• Andromeda : a proof assistant that lets you define your own

type theory, developed at FMF in Ljubljana
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1. 21 Okay so now that we convinced you that proof assistants based on
type theory can be used for formalisation in principle, let me give you
some examples of what has been done in practice.

2. First I’d like to mention some cool formalisation projects. The Coq proof
assistants has been used to verify some serious theorems. The odd order
theorem states that every finite group of odd order is solvable. When it
was first published, it was infamous for its long proof. The four colour
theorem was mentioned by Anja at the beginning of the talk, and the
thousands of different cases have been checked using the Coq prover. In
recent years people have formalised lots of homotopy theory.

3. People have also verified the correctness of substantial computer
programs, like a C compiler or cryptographic protocols that are used in
the code of the Firefox browser today. And of course people felt the urge
to verify proof assistants themselves.

4. Finally, type theory is also a lot of fun if you’re sure you never make
mistakes and don’t need to formalise anything.

5. Actually, there is not just one type theory, but there are lots of them, just
like there are lots of different sub-languages for different fields of maths. I
don’t have time to go into this, but Egbert here can tell you more about
it. He’s also an expert about the connection between type theory and
homotopy theory.

6. At FMF we developed a proof assistant that allows you to define your own
type theory and prove things with it. And that’s what Anja and I work on.



Why not use AI?

Soon, but not yet.
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