Approximate Relational Reasoning for Higher-Order
Probabilistic Programs

Philipp G. Haselwarter!, Kwing Hei Li', Alejandro Aguirre’, Simon Oddershede Gregersen?,
Joseph Tassarotti?, and Lars Birkedal

TAarhus University, 2New York University

10:30 1/27

Motivation

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs compute results approximately!

Goal: Bound error probability.

10:32 2.(1/2)/27

Probabilistic Specifications for Probabilistic Programs

10:32

Correct randomized programs compute results approximately!

Goal: Bound error probability.

Example from cryptography (2" possible keys, usually Q < 2"):
QZ

2n+1

‘Pr[A(enc(keygen M) =1] - Pr{A(rand_ciphqu) = 1” <

Specification:
“enc behaves (almost) like the uniform distribution on ciphertexts.

2.(2/2)/27

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs may take arbitrarily long to run!

Goal: Prove equivalence despite different internal use of randomness.

10:33 3.(1/2)/27

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs may take arbitrarily long to run!

Goal: Prove equivalence despite different internal use of randomness.

Let M < N.
letdirect _ = letreject _ =
rand M (recsampler _ =
letx =rand Nin
ifx < Mthenxelsesampler ()) ()
Claim:

Both functions compute the uniform distribution on {0, ..., M}.

10:33 3.2/2)/27

Probabilistic Specifications for Probabilistic Programs

letdirect _ = letreject _ =
rand M (recsampler _ =
letx =rand Nin

ifx < Mthenxelse sampler ()) ()
Letq = g, p = g, and p=1-p.

reject () _
direct () ¢ & \r;ea()
// \ M & & \r'gject()
Prl¢] = 1where g = ARO < R <M / \r’gject()

Pr[—¢] = p" after N rec. calls, goesto 0

= Pr[¢] goes to 1as n increases.
10:35 4127

Higher Order Separation Logic and Probabilities

- Many success stories for probabilistic semantics & logics, in particular
relational reasoning via couplings

- Higher-order functions and HO state still hard
- Iris: modular via HO separation logic (resource algebras, invariants, ...)
- Clutch/Approxis: modular, local reasoning for randomisation

- All formalized in Coq on top of Iris

10:36 5/27

Program Semantics

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, .., and probabilistic uniform sampling.

veVal:=ze€Z|beB|()|feloc|recfx=e] ...

ecExpri=v|ref(e)| le|ei«+ey| ... |rand(e)

10:37 6.(1/3)/27

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, .., and probabilistic uniform sampling.

veVal:=ze€Z|beB|()|feloc|recfx=e] ...

ecExpri=v|ref(e)| le|ei«+ey| ... |rand(e)

h € Heap £ Loc 1™ val
p € Cfg = Expr x Heap

10:37 6.(2/3)/27

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, .., and probabilistic uniform sampling.

veVal:=ze€Z|beB|()|feloc|recfx=e] ...

ecExpri=v|ref(e)| le|ei«+ey| ... |rand(e)

h € Heap £ Loc 1™ val
p € Cfg = Expr x Heap

TeType i=a|unit|bool|int|rx7|7+7|7T =7

Vo.7 | Ja. 7| pa.7 | refr

and a standard typing judgment e : 7.

10:37 6.(3/3)/27

Probabilities

A (discrete) sub-distribution u € D(A) over a countable set A is a function
p:A—[0,1] suchthat > ., p(a) <1.

10:38 7(112)127

Probabilities

A (discrete) sub-distribution u € D(A) over a countable set A is a function
p:A—[0,1] suchthat > ., p(a) <1.

Let u € D(A), a € A and f: A — D(B). The distribution monad is given by

1. bind(f,1)(b) 2 Yoenn(a) - f(a)(b)

2. ret(a)(a’) £ 1 if a=ad’, 0 otherwise.

Probabilistic computations compose!

10:38 72/2)/27

Operational Semantics

A program e with heap h evaluates to a distribution on values: exec(e, h) € D(/al).
exec Is defined by iterating step : C(fg — D(Cfg) via bind.
Write (e,h) =P (e’,h’) if step(e, h)(e’,h") =p.

(M. eq) e; = eqez/A]

rand(N) ="+ g vk € {0,1,...,N}

10:39 8/27

Semantics examples

- execflip = {true : 0.5,false : 0.5}

10:40 9.1/3)/27

Semantics examples

- execflip = {true : 0.5,false : 0.5}
- exec(not flip) = {false : 0.5,true : 0.5}

10:40 9.(2/3)/27

Semantics examples

- execflip = {true : 0.5,false : 0.5}
- exec(not flip) = {false : 0.5,true : 0.5}
- Let ¢ be a location and write h, for the heap [¢ — n].

Define e = (recf_ = if flip then ! Lelse (¢ + 1+ 1;f())) ().

e,hy) exec(e,hg) = {0:1/2, 1:1/4, 2:1/8, ...}

10:40 9.3/3)/27

Specifications & Couplings

Lifting Relations via Couplings

- Reasoning about equality of distributions directly is hard.

- “Coupling” proof technique: synchronize randomness

; notflip 4
fli ’ ’
/ \ not false not true
false true 1l l1
true false

10:41 10.(1/2)/27

Lifting Relations via Couplings

- Reasoning about equality of distributions directly is hard.

- “Coupling” proof technique: synchronize randomness

1 notflip
fli ’ ’
: D : / \
/ \, not false not true
false true w b
true false

10:41 10.2/2)/27

Coupling-based Program Logics |

- Reasoning about operational semantics is hard, even without distributions.

10:43 11.1/5)/27

Coupling-based Program Logics |

- Reasoning about operational semantics is hard, even without distributions.

- Build a program logic to construct couplings!

rwp e 3 e {¢}

Meaning: can align randomness s.t. ¢ holds.

10:43 11.(2/5)/27

Coupling-based Program Logics |

- Reasoning about operational semantics is hard, even without distributions.

- Build a program logic to construct couplings!

rwp e 3 e {¢}

Meaning: can align randomness s.t. ¢ holds.

- (Lifted) Relational postconditions on values (not distributions).

11.3/5)/27

Coupling-based Program Logics |

- Reasoning about operational semantics is hard, even without distributions.

- Build a program logic to construct couplings!
rwp e 3 e {¢}

Meaning: can align randomness s.t. ¢ holds.
- (Lifted) Relational postconditions on values (not distributions).

- Couplings compose:
wp ey 3 {} W V(v V) — wp epfv/X] 3 eplv'/X] {¢}

letx = e} ine, {¢}

rwp letx =ejine; =X

~

11.(4/5)/27

Coupling-based Program Logics |

- Reasoning about operational semantics is hard, even without distributions.

- Build a program logic to construct couplings!

rwp e 3 e {¢}

Meaning: can align randomness s.t. ¢ holds.
- (Lifted) Relational postconditions on values (not distributions).

- Couplings compose:
wp ey 3 {} W V(v V) — wp epfv/X] 3 eplv'/X] {¢}
letx = e} ine, {¢}

rwp letx =ejine; =X

~

- Postcondition ¢ can be any separation logic predicate. Today, we mostly use equality (“eq”).
- rwp e 3 e {¢}is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(5/5)/27

Coupling-based Program Logics Il

- Expose probabilistic reasoning only via coupling rule for “alighment™

fbijection YO<n<N,rwp n 3 fn {¢}
rwp randN 3 rand N {¢}

104 12.01/4) /27

Coupling-based Program Logics Il

- Expose probabilistic reasoning only via coupling rule for “alighment™

fbijection YO<n<N,rwp n 3 fn {¢}
rwp randN 3 rand N {¢}

- Standard, familiar rules for state etc. remain valid! For example:

l—v C—v—rwp Vv e {¢}
rwp 10 3 e {¢}

RWP-LOAD-L

104 12.2/4)/27

Coupling-based Program Logics Il

- Expose probabilistic reasoning only via coupling rule for “alighment™

fbijection YO<n<N,rwp n 3 fn {¢}
rwp randN 3 rand N {¢}

- Standard, familiar rules for state etc. remain valid! For example:

l—v C—v—rwp Vv e {¢}
rwp 10 3 e {¢}

RWP-LOAD-L

But also Lob induction, impredicative invariants, logical relations, ...

1044 12.(3/4) /27

Coupling-based Program Logics Il

- Expose probabilistic reasoning only via coupling rule for “alighment™

fbijection YO<n<N,rwp n 3 fn {¢}
rwp randN 3 rand N {¢}

- Standard, familiar rules for state etc. remain valid! For example:

l—v L= v—rwp Vv 3 e {¢}
rwp 10 3 e {¢}

RWP-LOAD-L

But also Lob induction, impredicative invariants, logical relations, ...
- Soundness theorem:
If rwp e X € {eq} then exec(e, h)(v) < exec(e’, h")(v) for all h, h’, and v.

1044 12.(4/4) /27

rwp true = not(—true) {eq} rwp false = not(—false) {eq}
-:B — B bij. vb. rwp b 3 not (—=b) {eq}
rwp flip < notflip {eq}

10:45 13/27

Fancy Alignment

Aligning Randomness at Different Points

Two one-time samplers:

eager = letb =flip inA_.b

lazy & letr = ref None in

A _. match !rwith

Some b=1b

| None = letb ="flip in
r < Some b;
b

end

10:47 14.1/5)/27

Aligning Randomness at Different Points

Two one-time samplers: We expect

rwp Cllazy] 2 Cleager] {eq}
eager = letb =flip inA_.b
Equivalence should hold for any

lazy = letr = ref None in ,
(well-typed) context C evaluating to a

A _. match !rwith

S By boolean.

| None = letb =flip in Note: Not the same distribution on val-
r < Some b; ues, but same observations!
b

end

10:47 14.(2/5)/27

Aligning Randomness at Different Points

Two one-time samplers:

eager = letb =flip inA_.b

lazy & letr = ref None in

A _. match !rwith

Some b=1b

| None = letb ="flip in
r < Some b;
b

end

10:47

We expect

rwp Cllazy] 2 Cleager] {eq}

f bijection
YO<n<N.rwpn 3 fn {¢}
rwp randN =< rand N {¢}

14.3/5)/27

Aligning Randomness at Different Points

Two one-time samplers: We expect

rwp Cllazy] 2 Cleager] {eq}
eager = letb =flip inA_.b

bijection
lazy & letr = ref None in f bij
A _. match !rwith TS0 WM & 3 10 e
- Some-b=> b rwp randN 3 randN {¢}

| None = letb=flip in 4
r — Some b: Does not apply: only allows coupling
b the next rand in both programs.

end

10:47 14.(4/5)/27

Aligning Randomness at Different Points

Two one-time samplers: We expect

rwp Cllazy] 2 Cleager] {eq}
eager = letb =flip inA_.b

bijection
lazy & letr = ref None in f bij
A _. match !rwith TS0 WM & 3 10 e
- Some-b=> b rwp randN 3 randN {¢}

| None = letb=flip in 4
r — Some b: Does not apply: only allows coupling
b the next rand in both programs.

end

Q: Why bother? A: Simplified example from ElGamal encryption scheme.

10:47 14.(5/5)/27

Aligning Asynchronous Samplings

- Goal: VC: (unit — bool) = bool, rwp C[lazy] 3 Cleager] {eq}

10:48 15.(1/3)/27

Aligning Asynchronous Samplings

- Goal: VC: (unit — bool) = bool, rwp C[lazy] 3 Cleager] {eq}

- Limitation: No “scoped” / local reasoning for randomness.

10:48 15.2/3)/27

Aligning Asynchronous Samplings

- Goal: VC: (unit — bool) = bool, rwp C[lazy] 3 Cleager] {eq}
- Limitation: No “scoped” / local reasoning for randomness.
- ldea:

- “Presampling tapes” de-couple construction of coupling from
operational semantics by introducing a resource for “logical
randomness”.

- “Tape allocation” confers ownership of a fresh (logical) source of
randomness.

10:48 15.3/3)/27

Modify RandML as follows

i= ... |t € Label

val v

Expr e == ... | rand(es,ey) | tapee
TapeMap = Label i Tape

State o € Heap x TapeMap

Cfg p = (o,€)

Type T = ...]|tape

10:48 16/27

Presampling Tapes |

flip(e) L€

10:49 17.01/5)/27

Presampling Tapes |

flip(e) L€

N[—
N

true false t+—e€

10:49 17.(2/5)/27

Presampling Tapes |

flip(e) L€ flip(e) v [bbi]ba]]

N —
N

true false t+—e€

10:49 17.3/5)/27

Presampling Tapes |

flip(e) L€ flip(e) v [bbi]ba]]

N —
N

true false tr—e€ b P .

10:49 17.(4/5)/27

Presampling Tapes |

flip(e) L€ flip(e) v [bbi]ba]]

N —
N

true false tre b P .

10:49 17.5/5)/27

Presampling Tapes I

.. but operationally, no language primitives add values to the tapes!

¢ :tape k- rwp flip 3 flip(e) {eq}

10:50 18.(1/4)/27

Presampling Tapes I

.. but operationally, no language primitives add values to the tapes!
¢ :tape k- rwp flip 3 flip(e) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

10:50 18.2/4)/127

Presampling Tapes I

.. but operationally, no language primitives add values to the tapes!
¢ :tape k- rwp flip 3 flip(e) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

oo Th]

10:50 18.(3/4)/27

Presampling Tapes I

.. but operationally, no language primitives add values to the tapes!
¢ :tape k- rwp flip 3 flip(e) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

L*—)’b1|b2' |bk

YN

L ’b1|b2 . |bh|true L ’b1|b2 : -|bfe|false‘

10:50 18.(4/4)127

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

10:50 19.1/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r}

rwp tape 3 e {7}

10:50 19.2/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r}

rwp(tape |3 e {7}

10:50 19.3/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.o = el—xrwp ¢ X e {7}

rwp tape 3 e {7}

10:50 19.(4/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp flip(¢) 3 ex {7}

10:50 19.5/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp| flip(¢) |32 ex {7}

10:50 19.6/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp flip(¢) 3 ex {7}

10:50 19.7/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp flip(¢) 3 ex {7}

10:50 19.(8/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp flip(¢) 3 ex {7}

10:50 19.(9/10)/27

Presampling Tapes Il

Logically, we introduce a separation logic resource

L —=b

that denotes ownership of a tape « and its contents b.

Vi.e—e—krwp ¢ 3 e {r} L b-b L‘—)B—*I’prjez{T}

rwp tape 3 e {7} rwp flip(¢) 3 ex {7}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.10/10)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

fbijection t—b VYb.i—>b-b—xrwp e = f(b) {4}
rwp e X flip {¢}

to couple program samplings asynchronously!

10:51 20.(1/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

fbijection t—b VYb.i—>b-b—xrwp e = f(b) {4}
rwp e [flip|{¢}

to couple program samplings asynchronously!

10:51 20.(2/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

fbijection [t b| Vb.isb-b—xrwp e = f(b) {4}
rwp e X flip {¢}

to couple program samplings asynchronously!

10:51 20.(3/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

fbijection ¢ b VYbli— b-b]— rwp e Z(f(b)) {4}
rwp e X flip {¢}

to couple program samplings asynchronously!

10:51 20.(4/4)127

Lazy / Eager Coin with Tapes

letb =(flip |inA_.b let r = ref None in
let, = tape |in

A _. match !'rwith

Some b= b
| None = letb =|flip ¢]in
r < Some b;
b
Proof: end

- asynchronously couple flip and tape ¢
- invariant: (¢ <= (1,b) *x £ — None) V £ — Some(b)

- case distinction on value of I'r
10:51 21/27

Approximate Reasoning

Approximate Equivalence

Sampling with replacement: without replacement:
letxg =rand Nin letxg = rand Nin
letx; =rand Nin letx; =rand N\ {xo} in
letx, =rand Nin letx; =rand N\ {xo,x1}In

(X0, X1,%2) (X0, X1,X2)

10:51 22.(1/3)/27

Approximate Equivalence

Sampling with replacement: without replacement:
letxg =rand Nin letxg = rand Nin
letx; =rand Nin letx; =rand N\ {xo} in
letx, =rand Nin letx; =rand N\ {xo,x1}In
(X0, X1, X2) (X0, X1,X2)

- We want to align distributions that aren’t equal.

10:51 22.(2/3)/127

Approximate Equivalence

Sampling with replacement: without replacement:
letxg =rand Nin letxg = rand Nin
i(ﬁ) letx; = rand Nin letx; = rand N\ {xo}in
f(ﬁ) letx, = rand N in let x, = rand N\ {Xg, %} in
(X0, %1,X2) (X0, %1,X2)

- We want to align distributions that aren’t equal.

- “Error credits” logically bound the distance between aligned distributions.

10:51 22.3/3)/27

Error Credits

- 4 (e) asserts ownership of e error credits, where ¢ € [0,1].

10:51 23.(1/4)/27

Error Credits

- 4 (e) asserts ownership of e error credits, where ¢ € [0,1].
- Error credits obey the following laws:

F£(0) f(e1) x £(e2) - £ (1 + €2) F(HEFL

10:51 23.2/4)/27

Error Credits

- #(e) asserts ownership of € error credits, where ¢ € [0,1].
- Error credits obey the following laws:
F£(0) £(e1) x £ (e2) I #(e1 +e2) fF(EL
- “Mismatched” samplings consume error:
f(w%z) vn<N.rwp n 3 n {o}
rwp rand N =X rand (N +1) {¢}

10:51 23.3/4)/27

Error Credits

- #(e) asserts ownership of € error credits, where ¢ € [0,1].
- Error credits obey the following laws:
F£(0) £(e1) x £ (e2) I #(e1 +e2) fF(EL
- “Mismatched” samplings consume error:
f(w%z) vn<N.rwp n 3 n {o}
rwp rand N =X rand (N +1) {¢}

- More generally (also: variant for tapes) :

f: Ney — Ney injection !(%—ﬂ) N<M Vn<N.rwpn 3 f(n) {¢}

rwp randN 3 randM {o}

10:51 23.(4/4)[27

An Approximate Relational H-O Separation Logic

10:51

- Semantic model requires a different notion of approximate coupling.
- Compatible with all previous probabilistic and non-probabilistic features.
- Soundness theorem:

If £(¢) F rwp e 3 €' {eq} then the distributions induced by
executing e and e’ are at distance at most e.

NB: ¢ = 0 means equality, recovering the previous logic.

24/27

Application: Equivalence by Approximation

let direct _ =
lety = tapeMin
rand M ¢4

Letp_,vl+1 andp=1-p.

direct ()

YN,

Prl¢] =1Twhere g = AR0O< R <M

10:51

letreject _ =
let, = tapeNin
(recsampler _ =
letx =randN ¢ in

ifx < Mthenxelse sampler ()) ()

reject()
2
/ reject()
p NP
0] < reject()
N
¢ reject ()

Pr[—¢] = p" after n rec. calls, goes to 0
25/27

Application: Security of a PRF-based Symmetric Encryption Scheme

letenc key msg = letr=randNin let keygen () = rand N
let pad = prfkey rin letdec key (r,c) = letpad = prfkeyrin
let c = xor msg pad in let msg = xor ¢ pad in
(r,c) msg

We prove, for all (well-typed) adversaries A:

2
!(2(3“) — rwp A (enc(keygen())q) 3 A(rand_cipher‘o) {eq}

By soundness theorem:

Q2

Pr[A(enc (keygen ())ja) = 1] — Pr[A(rand_cipheryg) =1]| < o5

10:51 26/27

The Bigger Picture

Preprint available at arxiv:2407.14107 (will be at POPL25)
Code & other papers at https://github.com/logsem/clutch

- Clutch: refinement, asynchronous sampling via tapes

- Eris: unary, bound probability of “bad events” via error credits
- Caliper: termination-preserving refinement

- Tachis: expected cost (e.g,, time or entropy) via cost credits

- Approxis: approximate refinement

- ongoing: concurrency, continuous distributions

- future: differential privacy, unifying framework, tail bounds, more security,
fair schedulers, distributed systems...

10:51 27/27

https://github.com/logsem/clutch

Configuration reduction

(h,
(h, ref(

v)
(h,1¢
(h,l +v
(h,rand N

(h, E[e]

€)
)

)
)
)
)

%
ﬁ
—
%
%
%

1

Y (h[e — V], 0)

1

1

p

p

e)

h(€))

R)
 E[€])

(h,
(
(h,
(h{t = V1, ())
(h,
(h’

e e

where ¢ = freshLoc(dom(h))
if ¢ € dom(h)
if ¢ € dom(h)

1
= < k<
p N and 0 < kR<N
if (h,e) =P (h',¢)

28/27

Operational semantics

Definition (n-step execution)
0 ifegValandn=20
ret(e) if e eVal

L

execValp(e, o)

step(e, o) >= execVal(,_y) otherwise

10:51 29.(1/2)/27

Operational semantics

Definition (n-step execution)
0 ifegValandn=20
ret(e) if e eVal

L

execValp(e, o)

step(e, o) >= execVal(,_y) otherwise

We can take the limit since execVal is monotone and bounded.

execVal(p)(v) £ limy_eoexecValy(p)(v)

A program thus induces a distribution on values.

10:51 29.(2/2)/27

A coupling for distributions w4 : D(A), uz : D(B), is a distribution p on A x B such
that Aa.) g p(a, b) = pr and Ab. Y~ o4 (@, b) = .

A coupling w lifts a relation R if for all (a, b) s.t. u(a, b) > 0, R(a, b) holds.
Definition (Approximate Coupling)

Let 1 € D(A) and py € D(B). Given some approximation error e € [0,1] and a
relation R C A x B, we say that there exists an (e, R)-coupling of uq and p; if for all
[0, 1]-valued random variables X : A — [0,1] and Y : B — [0, 1], such that (a,b) € R
implies X(a) < Y(b), the expected value of X exceeds the expected value of Y by at

moste, i.e, E, [X] <E,[Y] +e. We write uq <. p2 : R if an (e, R)-coupling exists
between puq and ps.

30/27

Error Amplification

0<e 1<k V(f(kR-&)—=P)x ()P
()P

ERR-AMP

O0<e 1<k
Ve'(f(R-€) —xrwp e 3 e {®})x () Frwp e 3 € {}
f(e)Frwp e 2 € {o}

WP-ERR-AMP

10:51 31/27

Fragmented Couplings

WP-FRAGMENTED-R-EXP
f:Neoy — Ney injection N<M £(g) ¢ (N,A) ¢ s (M,m)
then v < (N, A - f'(m)))

else ¢ < (N, 1) * i(%-s)

rwp er 3 e {®}

Vm < M. s (M, -m) * <ifm € img(f) — rwp e 3 e {o}

10:51 32/27

Bounded Oracles

letg_calls (Q:int) (f: o« — B): @« — B option =
let counter =ref0Oin

Ax.if (I counter < Q) then incr counter; Some (f x) else None

10:51 33/27

	Motivation
	Program Semantics
	Specifications & Couplings
	Fancy Alignment
	A Resource View of Randomness

	Approximate Reasoning
	Sources of Errors
	A Resource View of Errors

