
Approximate Relational Reasoning for Higher-Order
Probabilistic Programs

Philipp G. Haselwarter1, Kwing Hei Li1, Alejandro Aguirre1, Simon Oddershede Gregersen2,
Joseph Tassarotti2, and Lars Birkedal1

1Aarhus University, 2New York University

10:30 1/27

Motivation

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs compute results approximately!

Goal: Bound error probability.

Example from cryptography (2n possible keys, usually Q� 2n):∣∣∣Pr[A(enc (keygen ())|Q) = 1
]
− Pr

[
A(rand_cipher|Q) = 1

]∣∣∣ ≤ Q2

2n+1

Specification:
“enc behaves (almost) like the uniform distribution on ciphertexts.”

10:32 2.(1/2)/27

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs compute results approximately!

Goal: Bound error probability.

Example from cryptography (2n possible keys, usually Q� 2n):∣∣∣Pr[A(enc (keygen ())|Q) = 1
]
− Pr

[
A(rand_cipher|Q) = 1

]∣∣∣ ≤ Q2

2n+1

Specification:
“enc behaves (almost) like the uniform distribution on ciphertexts.”

10:32 2.(2/2)/27

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs may take arbitrarily long to run!

Goal: Prove equivalence despite different internal use of randomness.

Let M < N.

let direct _ =

randM
let reject _ =

(rec sampler _ =

let x = randN in
if x ≤ M then x else sampler ()) ()

Claim:
Both functions compute the uniform distribution on {0, . . . ,M}.

10:33 3.(1/2)/27

Probabilistic Specifications for Probabilistic Programs

Correct randomized programs may take arbitrarily long to run!

Goal: Prove equivalence despite different internal use of randomness.

Let M < N.

let direct _ =

randM
let reject _ =

(rec sampler _ =

let x = randN in
if x ≤ M then x else sampler ()) ()

Claim:
Both functions compute the uniform distribution on {0, . . . ,M}.

10:33 3.(2/2)/27

Probabilistic Specifications for Probabilistic Programs

let direct _ =

randM
let reject _ =

(rec sampler _ =

let x = randN in
if x ≤ M then x else sampler ()) ()

Let q = 1
M+1 , p = N−M

N+1 , and p̄ = 1− p.

direct ()

0 … … M

q q q q

Pr[φ] = 1 where φ = λk.0 ≤ k ≤ M

reject ()

φ reject ()

φ reject ()

φ reject ()

p p̄

p p̄

p p̄

Pr[¬φ] = p̄n after n rec. calls, goes to 0
⇒ Pr[φ] goes to 1 as n increases.

10:35 4/27

Higher Order Separation Logic and Probabilities

• Many success stories for probabilistic semantics & logics, in particular
relational reasoning via couplings

• Higher-order functions and HO state still hard
• Iris: modular via HO separation logic (resource algebras, invariants, ...)
• Clutch/Approxis: modular, local reasoning for randomisation
• All formalized in Coq on top of Iris

10:36 5/27

Program Semantics

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, …, and probabilistic uniform sampling.

v ∈Val ::= z ∈ Z | b ∈ B | () | ` ∈ Loc | rec f x = e | . . .
e ∈ Expr ::= v | ref(e) | ! e | e1 ← e2 | . . . | rand(e)

h ∈ Heap ≜ Loc fin−⇀Val
ρ ∈ Cfg ≜ Expr×Heap

τ ∈ Type ::= α | unit | bool | int | τ × τ | τ + τ | τ → τ |
∀α. τ | ∃α. τ | µα. τ | ref τ

and a standard typing judgment Γ ` e : τ .

10:37 6.(1/3)/27

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, …, and probabilistic uniform sampling.

v ∈Val ::= z ∈ Z | b ∈ B | () | ` ∈ Loc | rec f x = e | . . .
e ∈ Expr ::= v | ref(e) | ! e | e1 ← e2 | . . . | rand(e)

h ∈ Heap ≜ Loc fin−⇀Val
ρ ∈ Cfg ≜ Expr×Heap

τ ∈ Type ::= α | unit | bool | int | τ × τ | τ + τ | τ → τ |
∀α. τ | ∃α. τ | µα. τ | ref τ

and a standard typing judgment Γ ` e : τ .

10:37 6.(2/3)/27

The RandML language

A ML-like language with higher-order (recursive) functions, higher-order state,
impredicative polymorphism, …, and probabilistic uniform sampling.

v ∈Val ::= z ∈ Z | b ∈ B | () | ` ∈ Loc | rec f x = e | . . .
e ∈ Expr ::= v | ref(e) | ! e | e1 ← e2 | . . . | rand(e)

h ∈ Heap ≜ Loc fin−⇀Val
ρ ∈ Cfg ≜ Expr×Heap

τ ∈ Type ::= α | unit | bool | int | τ × τ | τ + τ | τ → τ |
∀α. τ | ∃α. τ | µα. τ | ref τ

and a standard typing judgment Γ ` e : τ .

10:37 6.(3/3)/27

Probabilities

A (discrete) sub-distribution µ ∈ D(A) over a countable set A is a function
µ : A→ [0, 1] such that

∑
a∈A µ(a) ≤ 1.

Let µ ∈ D(A), a ∈ A, and f : A→ D(B). The distribution monad is given by

1. bind(f, µ)(b) ≜
∑

a∈A µ(a) · f(a)(b)
2. ret(a)(a′) ≜ 1 if a = a′, 0 otherwise.

Probabilistic computations compose!

10:38 7.(1/2)/27

Probabilities

A (discrete) sub-distribution µ ∈ D(A) over a countable set A is a function
µ : A→ [0, 1] such that

∑
a∈A µ(a) ≤ 1.

Let µ ∈ D(A), a ∈ A, and f : A→ D(B). The distribution monad is given by

1. bind(f, µ)(b) ≜
∑

a∈A µ(a) · f(a)(b)
2. ret(a)(a′) ≜ 1 if a = a′, 0 otherwise.

Probabilistic computations compose!

10:38 7.(2/2)/27

Operational Semantics

A program e with heap h evaluates to a distribution on values: exec(e,h) ∈ D(Val).

exec is defined by iterating step : Cfg→ D(Cfg) via bind.

Write (e,h) −→p (e′,h′) if step(e,h)(e′,h′) = p.

(λx. e1) e2 −→1 e1[e2/x]
...

rand(N) −→1/(N+1) k ∀k ∈ {0, 1, . . . ,N}

10:39 8/27

Semantics examples

• exec flip = {true : 0.5, false : 0.5}

• exec(not flip) = {false : 0.5, true : 0.5}
• Let ` be a location and write hn for the heap [` 7→ n].
Define e ≜ (rec f _ = if flip then ! ` else (`← ! `+ 1; f())) ().

(e,h0)

0 (e,h1)

1 (e,h2)

2 (e,h3)

1
2

1
2

1
2

1
2

1
2

1
2

exec(e,h0) = {0 : 1/2, 1 : 1/4, 2 : 1/8, . . .}

10:40 9.(1/3)/27

Semantics examples

• exec flip = {true : 0.5, false : 0.5}
• exec(not flip) = {false : 0.5, true : 0.5}

• Let ` be a location and write hn for the heap [` 7→ n].
Define e ≜ (rec f _ = if flip then ! ` else (`← ! `+ 1; f())) ().

(e,h0)

0 (e,h1)

1 (e,h2)

2 (e,h3)

1
2

1
2

1
2

1
2

1
2

1
2

exec(e,h0) = {0 : 1/2, 1 : 1/4, 2 : 1/8, . . .}

10:40 9.(2/3)/27

Semantics examples

• exec flip = {true : 0.5, false : 0.5}
• exec(not flip) = {false : 0.5, true : 0.5}
• Let ` be a location and write hn for the heap [` 7→ n].
Define e ≜ (rec f _ = if flip then ! ` else (`← ! `+ 1; f())) ().

(e,h0)

0 (e,h1)

1 (e,h2)

2 (e,h3)

1
2

1
2

1
2

1
2

1
2

1
2

exec(e,h0) = {0 : 1/2, 1 : 1/4, 2 : 1/8, . . .}

10:40 9.(3/3)/27

Specifications & Couplings

Lifting Relations via Couplings

• Reasoning about equality of distributions directly is hard.
• “Coupling” proof technique: synchronize randomness

flip

false true

1
2

1
2

not flip

not false

true

not true

false

1
2

1

1
2

1

10:41 10.(1/2)/27

Lifting Relations via Couplings

• Reasoning about equality of distributions directly is hard.
• “Coupling” proof technique: synchronize randomness

flip

false true

1
2

1
2

not flip

not false

true

not true

false

1
2

1

1
2

1

10:41 10.(2/2)/27

Coupling-based Program Logics I

• Reasoning about operational semantics is hard, even without distributions.

• Build a program logic to construct couplings!

rwp e ≾ e′ {φ}

Meaning: can align randomness s.t. φ holds.
• (Lifted) Relational postconditions on values (not distributions).
• Couplings compose:
rwp e1 ≾ e′1 {ψ} ∀v, v′.ψ(v, v′) ∗ rwp e2[v/x] ≾ e′2[v′/x] {φ}

rwp let x = e1 in e2 ≾ let x = e′1 in e′2 {φ}

• Postcondition φ can be any separation logic predicate. Today, we mostly use equality (“eq”).

• rwp e ≾ e′ {φ} is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(1/5)/27

Coupling-based Program Logics I

• Reasoning about operational semantics is hard, even without distributions.
• Build a program logic to construct couplings!

rwp e ≾ e′ {φ}

Meaning: can align randomness s.t. φ holds.

• (Lifted) Relational postconditions on values (not distributions).
• Couplings compose:
rwp e1 ≾ e′1 {ψ} ∀v, v′.ψ(v, v′) ∗ rwp e2[v/x] ≾ e′2[v′/x] {φ}

rwp let x = e1 in e2 ≾ let x = e′1 in e′2 {φ}

• Postcondition φ can be any separation logic predicate. Today, we mostly use equality (“eq”).

• rwp e ≾ e′ {φ} is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(2/5)/27

Coupling-based Program Logics I

• Reasoning about operational semantics is hard, even without distributions.
• Build a program logic to construct couplings!

rwp e ≾ e′ {φ}

Meaning: can align randomness s.t. φ holds.
• (Lifted) Relational postconditions on values (not distributions).

• Couplings compose:
rwp e1 ≾ e′1 {ψ} ∀v, v′.ψ(v, v′) ∗ rwp e2[v/x] ≾ e′2[v′/x] {φ}

rwp let x = e1 in e2 ≾ let x = e′1 in e′2 {φ}

• Postcondition φ can be any separation logic predicate. Today, we mostly use equality (“eq”).

• rwp e ≾ e′ {φ} is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(3/5)/27

Coupling-based Program Logics I

• Reasoning about operational semantics is hard, even without distributions.
• Build a program logic to construct couplings!

rwp e ≾ e′ {φ}

Meaning: can align randomness s.t. φ holds.
• (Lifted) Relational postconditions on values (not distributions).
• Couplings compose:
rwp e1 ≾ e′1 {ψ} ∀v, v′.ψ(v, v′) ∗ rwp e2[v/x] ≾ e′2[v′/x] {φ}

rwp let x = e1 in e2 ≾ let x = e′1 in e′2 {φ}

• Postcondition φ can be any separation logic predicate. Today, we mostly use equality (“eq”).

• rwp e ≾ e′ {φ} is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(4/5)/27

Coupling-based Program Logics I

• Reasoning about operational semantics is hard, even without distributions.
• Build a program logic to construct couplings!

rwp e ≾ e′ {φ}

Meaning: can align randomness s.t. φ holds.
• (Lifted) Relational postconditions on values (not distributions).
• Couplings compose:
rwp e1 ≾ e′1 {ψ} ∀v, v′.ψ(v, v′) ∗ rwp e2[v/x] ≾ e′2[v′/x] {φ}

rwp let x = e1 in e2 ≾ let x = e′1 in e′2 {φ}

• Postcondition φ can be any separation logic predicate. Today, we mostly use equality (“eq”).

• rwp e ≾ e′ {φ} is defined as refinement. Today, think bi-refinement (equivalence).

10:43 11.(5/5)/27

Coupling-based Program Logics II

• Expose probabilistic reasoning only via coupling rule for “alignment”:

f bijection ∀0 ≤ n ≤ N, rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

• Standard, familiar rules for state etc. remain valid! For example:

` 7→ v ` 7→ v ∗ rwp v ≾ e {φ}
rwp ! ` ≾ e {φ}

RWP-LOAD-L

But also Löb induction, impredicative invariants, logical relations, …
• Soundness theorem:

If rwp e ≾ e′ {eq} then exec(e,h)(v) ≤ exec(e′,h′)(v) for all h,h′, and v.

10:44 12.(1/4)/27

Coupling-based Program Logics II

• Expose probabilistic reasoning only via coupling rule for “alignment”:

f bijection ∀0 ≤ n ≤ N, rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

• Standard, familiar rules for state etc. remain valid! For example:

` 7→ v ` 7→ v ∗ rwp v ≾ e {φ}
rwp ! ` ≾ e {φ}

RWP-LOAD-L

But also Löb induction, impredicative invariants, logical relations, …

• Soundness theorem:
If rwp e ≾ e′ {eq} then exec(e,h)(v) ≤ exec(e′,h′)(v) for all h,h′, and v.

10:44 12.(2/4)/27

Coupling-based Program Logics II

• Expose probabilistic reasoning only via coupling rule for “alignment”:

f bijection ∀0 ≤ n ≤ N, rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

• Standard, familiar rules for state etc. remain valid! For example:

` 7→ v ` 7→ v ∗ rwp v ≾ e {φ}
rwp ! ` ≾ e {φ}

RWP-LOAD-L

But also Löb induction, impredicative invariants, logical relations, …

• Soundness theorem:
If rwp e ≾ e′ {eq} then exec(e,h)(v) ≤ exec(e′,h′)(v) for all h,h′, and v.

10:44 12.(3/4)/27

Coupling-based Program Logics II

• Expose probabilistic reasoning only via coupling rule for “alignment”:

f bijection ∀0 ≤ n ≤ N, rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

• Standard, familiar rules for state etc. remain valid! For example:

` 7→ v ` 7→ v ∗ rwp v ≾ e {φ}
rwp ! ` ≾ e {φ}

RWP-LOAD-L

But also Löb induction, impredicative invariants, logical relations, …
• Soundness theorem:

If rwp e ≾ e′ {eq} then exec(e,h)(v) ≤ exec(e′,h′)(v) for all h,h′, and v.

10:44 12.(4/4)/27

In Action

¬ : B→ B bij.
rwp true ≾ not (¬true) {eq} rwp false ≾ not (¬false) {eq}

∀b. rwp b ≾ not (¬b) {eq}
rwp flip ≾ not flip {eq}

10:45 13/27

Fancy Alignment

Aligning Randomness at Different Points

Two one-time samplers:

eager ≜ let b = flip in λ _. b

lazy ≜ let r = ref None in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip in

r← Some b;
b

end

We expect

rwp C[lazy] ≾ C[eager] {eq}

Does not apply: only allows coupling
the next rand in both programs.

Q: Why bother? A: Simplified example from ElGamal encryption scheme.

10:47 14.(1/5)/27

Aligning Randomness at Different Points

Two one-time samplers:

eager ≜ let b = flip in λ _. b

lazy ≜ let r = ref None in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip in

r← Some b;
b

end

We expect

rwp C[lazy] ≾ C[eager] {eq}

Equivalence should hold for any
(well-typed) context C evaluating to a
boolean.

Note: Not the same distribution on val-
ues, but same observations!

Does not apply: only allows coupling
the next rand in both programs.

Q: Why bother? A: Simplified example from ElGamal encryption scheme.

10:47 14.(2/5)/27

Aligning Randomness at Different Points

Two one-time samplers:

eager ≜ let b = flip in λ _. b

lazy ≜ let r = ref None in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip in

r← Some b;
b

end

We expect

rwp C[lazy] ≾ C[eager] {eq}

f bijection
∀0 ≤ n ≤ N . rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

Does not apply: only allows coupling
the next rand in both programs.

Q: Why bother? A: Simplified example from ElGamal encryption scheme.

10:47 14.(3/5)/27

Aligning Randomness at Different Points

Two one-time samplers:

eager ≜ let b = flip in λ _. b

lazy ≜ let r = ref None in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip in

r← Some b;
b

end

We expect

rwp C[lazy] ≾ C[eager] {eq}

f bijection
∀0 ≤ n ≤ N . rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

Does not apply: only allows coupling
the next rand in both programs.

Q: Why bother? A: Simplified example from ElGamal encryption scheme.

10:47 14.(4/5)/27

Aligning Randomness at Different Points

Two one-time samplers:

eager ≜ let b = flip in λ _. b

lazy ≜ let r = ref None in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip in

r← Some b;
b

end

We expect

rwp C[lazy] ≾ C[eager] {eq}

f bijection
∀0 ≤ n ≤ N . rwp n ≾ f n {φ}
rwp randN ≾ randN {φ}

Does not apply: only allows coupling
the next rand in both programs.

Q: Why bother? A: Simplified example from ElGamal encryption scheme.
10:47 14.(5/5)/27

Aligning Asynchronous Samplings

• Goal: ∀C : (unit→ bool)⇒ bool, rwp C[lazy] ≾ C[eager] {eq}

• Limitation: No “scoped” / local reasoning for randomness.
• Idea:

• “Presampling tapes” de-couple construction of coupling from
operational semantics by introducing a resource for “logical
randomness”.

• “Tape allocation” confers ownership of a fresh (logical) source of
randomness.

10:48 15.(1/3)/27

Aligning Asynchronous Samplings

• Goal: ∀C : (unit→ bool)⇒ bool, rwp C[lazy] ≾ C[eager] {eq}
• Limitation: No “scoped” / local reasoning for randomness.

• Idea:
• “Presampling tapes” de-couple construction of coupling from
operational semantics by introducing a resource for “logical
randomness”.

• “Tape allocation” confers ownership of a fresh (logical) source of
randomness.

10:48 15.(2/3)/27

Aligning Asynchronous Samplings

• Goal: ∀C : (unit→ bool)⇒ bool, rwp C[lazy] ≾ C[eager] {eq}
• Limitation: No “scoped” / local reasoning for randomness.
• Idea:

• “Presampling tapes” de-couple construction of coupling from
operational semantics by introducing a resource for “logical
randomness”.

• “Tape allocation” confers ownership of a fresh (logical) source of
randomness.

10:48 15.(3/3)/27

Syntax

Modify RandML as follows
...

Val v ::= . . . | ι ∈ Label
Expr e ::= . . . | rand(e1, e2) | tape e
TapeMap = Label fin−⇀ Tape
State σ ∈ Heap× TapeMap
Cfg ρ ::= (σ, e)

Type τ ::= . . . | tape

10:48 16/27

Presampling Tapes I

flip(ι) ι 7→ ε

true false ι 7→ ε

1
2

1
2

flip(ι) ι 7→ b b1 b2 . . .

b ι 7→ b1 b2 . . .

1

10:49 17.(1/5)/27

Presampling Tapes I

flip(ι) ι 7→ ε

true false ι 7→ ε

1
2

1
2

flip(ι) ι 7→ b b1 b2 . . .

b ι 7→ b1 b2 . . .

1

10:49 17.(2/5)/27

Presampling Tapes I

flip(ι) ι 7→ ε

true false ι 7→ ε

1
2

1
2

flip(ι) ι 7→ b b1 b2 . . .

b ι 7→ b1 b2 . . .

1

10:49 17.(3/5)/27

Presampling Tapes I

flip(ι) ι 7→ ε

true false ι 7→ ε

1
2

1
2

flip(ι) ι 7→ b b1 b2 . . .

b ι 7→ b1 b2 . . .

1

10:49 17.(4/5)/27

Presampling Tapes I

flip(ι) ι 7→ ε

true false ι 7→ ε

1
2

1
2

flip(ι) ι 7→ b b1 b2 . . .

b ι 7→ b1 b2 . . .

1

10:49 17.(5/5)/27

Presampling Tapes II

... but operationally, no language primitives add values to the tapes!

ι : tape ` rwp flip ≾ flip(ι) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

ι 7→ b1 b2 . . . bk

ι 7→ b1 b2 . . . bk true ι 7→ b1 b2 . . . bk false

1
2

1
2

10:50 18.(1/4)/27

Presampling Tapes II

... but operationally, no language primitives add values to the tapes!

ι : tape ` rwp flip ≾ flip(ι) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

ι 7→ b1 b2 . . . bk

ι 7→ b1 b2 . . . bk true ι 7→ b1 b2 . . . bk false

1
2

1
2

10:50 18.(2/4)/27

Presampling Tapes II

... but operationally, no language primitives add values to the tapes!

ι : tape ` rwp flip ≾ flip(ι) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

ι 7→ b1 b2 . . . bk

ι 7→ b1 b2 . . . bk true ι 7→ b1 b2 . . . bk false

1
2

1
2

10:50 18.(3/4)/27

Presampling Tapes II

... but operationally, no language primitives add values to the tapes!

ι : tape ` rwp flip ≾ flip(ι) {eq}

Instead, tapes will be populated with fresh samples via a logical operation.

ι 7→ b1 b2 . . . bk

ι 7→ b1 b2 . . . bk true ι 7→ b1 b2 . . . bk false

1
2

1
2

10:50 18.(4/4)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(1/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(2/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(3/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(4/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(5/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(6/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(7/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(8/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(9/10)/27

Presampling Tapes III

Logically, we introduce a separation logic resource

ι ↪→ ~b

that denotes ownership of a tape ι and its contents ~b.

∀ι. ι ↪→ ε ∗ rwp ι ≾ e {τ}
rwp tape ≾ e {τ}

ι ↪→ b · ~b ι ↪→ ~b ∗ rwp b ≾ e2 {τ}
rwp flip(ι) ≾ e2 {τ}

It—locally—turns reasoning about probabilistic choice into reasoning about state.

10:50 19.(10/10)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

f bijection ι ↪→ ~b ∀b. ι ↪→ ~b · b ∗ rwp e ≾ f(b) {φ}
rwp e ≾ flip {φ}

to couple program samplings asynchronously!

10:51 20.(1/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

f bijection ι ↪→ ~b ∀b. ι ↪→ ~b · b ∗ rwp e ≾ f(b) {φ}
rwp e ≾ flip {φ}

to couple program samplings asynchronously!

10:51 20.(2/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

f bijection ι ↪→ ~b ∀b. ι ↪→ ~b · b ∗ rwp e ≾ f(b) {φ}
rwp e ≾ flip {φ}

to couple program samplings asynchronously!

10:51 20.(3/4)/27

Asynchronous Couplings

With presampling tapes, we can synchronously couple tape samplings with
program samplings

f bijection ι ↪→ ~b ∀b. ι ↪→ ~b · b ∗ rwp e ≾ f(b) {φ}
rwp e ≾ flip {φ}

to couple program samplings asynchronously!

10:51 20.(4/4)/27

Lazy / Eager Coin with Tapes

let b = flip in λ _. b let r = ref None in
let ι = tape in
λ _. match ! rwith

Some b⇒ b
| None ⇒ let b = flip ι in

r← Some b;
b

endProof:

• asynchronously couple flip and tape ι

• invariant: (ι ↪→ (1,b) ∗ ` 7→ None) ∨ ` 7→ Some(b)

• case distinction on value of ! r
10:51 21/27

Approximate Reasoning

Approximate Equivalence

Sampling with replacement: without replacement:
let x0 = randN in let x0 = randN in

E
(

1
N+1

)

let x1 = randN in let x1 = randN \ {x0} in

E
(

2
N+1

)

let x2 = randN in let x2 = randN \ {x0, x1} in

(x0, x1, x2) (x0, x1, x2)

• We want to align distributions that aren’t equal.
• “Error credits” logically bound the distance between aligned distributions.

10:51 22.(1/3)/27

Approximate Equivalence

Sampling with replacement: without replacement:
let x0 = randN in let x0 = randN in

E
(

1
N+1

)

let x1 = randN in let x1 = randN \ {x0} in

E
(

2
N+1

)

let x2 = randN in let x2 = randN \ {x0, x1} in

(x0, x1, x2) (x0, x1, x2)

• We want to align distributions that aren’t equal.

• “Error credits” logically bound the distance between aligned distributions.

10:51 22.(2/3)/27

Approximate Equivalence

Sampling with replacement: without replacement:
let x0 = randN in let x0 = randN in

E
(

1
N+1

)
let x1 = randN in let x1 = randN \ {x0} in

E
(

2
N+1

)
let x2 = randN in let x2 = randN \ {x0, x1} in

(x0, x1, x2) (x0, x1, x2)

• We want to align distributions that aren’t equal.
• “Error credits” logically bound the distance between aligned distributions.

10:51 22.(3/3)/27

Error Credits

• E(ε) asserts ownership of ε error credits, where ε ∈ [0, 1].

• Error credits obey the following laws:

` E(0) E(ε1) ∗ E(ε2) a` E(ε1 + ε2) E(1) ` ⊥

• “Mismatched” samplings consume error:

E
(

1
N+2

)
∀n ≤ N. rwp n ≾ n {Φ}

rwp randN ≾ rand (N+ 1) {Φ}

• More generally (also: variant for tapes) :

f : N≤N → N≤M injection E
(
M−N
M+1

)
N ≤ M ∀n ≤ N. rwp n ≾ f(n) {Φ}

rwp randN ≾ randM {Φ}

10:51 23.(1/4)/27

Error Credits

• E(ε) asserts ownership of ε error credits, where ε ∈ [0, 1].
• Error credits obey the following laws:

` E(0) E(ε1) ∗ E(ε2) a` E(ε1 + ε2) E(1) ` ⊥

• “Mismatched” samplings consume error:

E
(

1
N+2

)
∀n ≤ N. rwp n ≾ n {Φ}

rwp randN ≾ rand (N+ 1) {Φ}

• More generally (also: variant for tapes) :

f : N≤N → N≤M injection E
(
M−N
M+1

)
N ≤ M ∀n ≤ N. rwp n ≾ f(n) {Φ}

rwp randN ≾ randM {Φ}

10:51 23.(2/4)/27

Error Credits

• E(ε) asserts ownership of ε error credits, where ε ∈ [0, 1].
• Error credits obey the following laws:

` E(0) E(ε1) ∗ E(ε2) a` E(ε1 + ε2) E(1) ` ⊥

• “Mismatched” samplings consume error:

E
(

1
N+2

)
∀n ≤ N. rwp n ≾ n {Φ}

rwp randN ≾ rand (N+ 1) {Φ}

• More generally (also: variant for tapes) :

f : N≤N → N≤M injection E
(
M−N
M+1

)
N ≤ M ∀n ≤ N. rwp n ≾ f(n) {Φ}

rwp randN ≾ randM {Φ}

10:51 23.(3/4)/27

Error Credits

• E(ε) asserts ownership of ε error credits, where ε ∈ [0, 1].
• Error credits obey the following laws:

` E(0) E(ε1) ∗ E(ε2) a` E(ε1 + ε2) E(1) ` ⊥

• “Mismatched” samplings consume error:

E
(

1
N+2

)
∀n ≤ N. rwp n ≾ n {Φ}

rwp randN ≾ rand (N+ 1) {Φ}

• More generally (also: variant for tapes) :

f : N≤N → N≤M injection E
(
M−N
M+1

)
N ≤ M ∀n ≤ N. rwp n ≾ f(n) {Φ}

rwp randN ≾ randM {Φ}

10:51 23.(4/4)/27

An Approximate Relational H-O Separation Logic

• Semantic model requires a different notion of approximate coupling.
• Compatible with all previous probabilistic and non-probabilistic features.
• Soundness theorem:

If E(ε) ` rwp e ≾ e′ {eq} then the distributions induced by
executing e and e′ are at distance at most ε.

NB: ε = 0 means equality, recovering the previous logic.

10:51 24/27

Application: Equivalence by Approximation

let direct _ =

let ιd = tapeM in
randM ιd

let reject _ =

let ιr = tapeN in
(rec sampler _ =

let x = randN ιr in
if x ≤ M then x else sampler ()) ()

Let p = 1
M+1 and p̄ = 1− p.

direct ()

0 … … M

p p p p

Pr[φ] = 1 where φ = λk.0 ≤ k ≤ M

reject ()

φ reject ()

φ reject ()

φ reject ()

p p̄

p p̄

p p̄

Pr[¬φ] = p̄n after n rec. calls, goes to 0
10:51 25/27

Application: Security of a PRF-based Symmetric Encryption Scheme

let enc key msg = let r = randN in
let pad = prf key r in
let c = xor msg pad in
(r, c)

let keygen () = randN
let dec key (r, c) = let pad = prf key r in

let msg = xor c pad in
msg

We prove, for all (well-typed) adversaries A:

E
(

Q2

2n+1

)
∗ rwp A (enc (keygen ())|Q) ≾ A (rand_cipher|Q) {eq}

By soundness theorem:∣∣∣Pr[A(enc (keygen ())|Q) = 1
]
− Pr

[
A(rand_cipher|Q) = 1

]∣∣∣ ≤ Q2

2n+1

10:51 26/27

The Bigger Picture

Preprint available at arxiv:2407.14107 (will be at POPL’25)
Code & other papers at https://github.com/logsem/clutch

• Clutch: refinement, asynchronous sampling via tapes
• Eris: unary, bound probability of “bad events” via error credits
• Caliper: termination-preserving refinement
• Tachis: expected cost (e.g., time or entropy) via cost credits
• Approxis: approximate refinement

• ongoing: concurrency, continuous distributions
• future: differential privacy, unifying framework, tail bounds, more security,
fair schedulers, distributed systems...

10:51 27/27

https://github.com/logsem/clutch

Configuration reduction

(h, e) −→1 (h, e′) if e pure⇝ e′

(h, ref(v)) −→1 (h[` 7→ v], `) where ` = freshLoc(dom(h))
(h, ! `) −→1 (h,h(`)) if ` ∈ dom(h)

(h, `← v) −→1 (h[` 7→ v], ()) if ` ∈ dom(h)

(h, randN) −→p (h, k) p =
1

N+ 1 and 0 ≤ k ≤ N

(h, E[e]) −→p (h′, E[e′]) if (h, e) −→p (h′, e′)

10:51 28/27

Operational semantics

Definition (n-step execution)

execValn(e, σ) ≜


0 if e 6∈Val and n = 0
ret(e) if e ∈Val
step(e, σ)�= execVal(n−1) otherwise

We can take the limit since execVal is monotone and bounded.

execVal(ρ)(v) ≜ limn→∞execValn(ρ)(v)

A program thus induces a distribution on values.

10:51 29.(1/2)/27

Operational semantics

Definition (n-step execution)

execValn(e, σ) ≜


0 if e 6∈Val and n = 0
ret(e) if e ∈Val
step(e, σ)�= execVal(n−1) otherwise

We can take the limit since execVal is monotone and bounded.

execVal(ρ)(v) ≜ limn→∞execValn(ρ)(v)

A program thus induces a distribution on values.

10:51 29.(2/2)/27

Couplings

A coupling for distributions µ1 : D(A), µ2 : D(B), is a distribution µ on A× B such
that λa.

∑
b∈B µ(a,b) = µ1 and λb.

∑
a∈A µ(a,b) = µ2.

A coupling µ lifts a relation R if for all (a,b) s.t. µ(a,b) > 0, R(a,b) holds.

Definition (Approximate Coupling)
Let µ1 ∈ D(A) and µ2 ∈ D(B). Given some approximation error ε ∈ [0, 1] and a
relation R ⊆ A× B, we say that there exists an (ε,R)-coupling of µ1 and µ2 if for all
[0, 1]-valued random variables X : A→ [0, 1] and Y : B→ [0, 1], such that (a,b) ∈ R
implies X(a) ≤ Y(b), the expected value of X exceeds the expected value of Y by at
most ε, i.e., Eµ1 [X] ≤ Eµ2 [Y] + ε. We write µ1 ≲ε µ2 : R if an (ε,R)-coupling exists
between µ1 and µ2.

10:51 30/27

Error Amplification

0 < ε 1 < k ∀ε′.(E
(
k · ε′

)
∗ P) ∗ E

(
ε′
)
` P

E(ε) ` P
ERR-AMP

0 < ε 1 < k
∀ε′.(E

(
k · ε′

)
∗ rwp e ≾ e′ {Φ}) ∗ E

(
ε′
)
` rwp e ≾ e′ {Φ}

E(ε) ` rwp e ≾ e′ {Φ}
WP-ERR-AMP

10:51 31/27

Fragmented Couplings

WP-FRAGMENTED-R-EXP
f : N≤N → N≤M injection N < M E(ε) ι ↪→ (N, ~n) ι′ ↪→s (M, ~m)

∀m ≤ M. ι′ ↪→s (M, ~m ·m) ∗

(
if m ∈ img(f)

then ι ↪→ (N, ~n · f−1(m))

else ι ↪→ (N, ~n) ∗ E
(

M+1
M−N · ε

)) ∗ rwp e1 ≾ e2 {Φ}

rwp e1 ≾ e2 {Φ}

10:51 32/27

Bounded Oracles

let q_calls (Q : int) (f : α→ β) : α→ β option =

let counter = ref 0 in
λ x. if (! counter < Q) then incr counter ; Some (f x) else None

10:51 33/27

	Motivation
	Program Semantics
	Specifications & Couplings
	Fancy Alignment
	A Resource View of Randomness

	Approximate Reasoning
	Sources of Errors
	A Resource View of Errors

