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Algorithms 101:
“Argue that A(n) runs in time t(n)."
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Drawing Inspiration from Atkey’s Time Credits

To reason about costs, Atkey proposed separation logic with time credit
assertions $n:

{($n} tick() {$(n — 1)} $(n1 + ny) = $n1 % $n;
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Drawing Inspiration from Atkey’s Time Credits

To reason about costs, Atkey proposed separation logic with time credit
assertions $n:

{($n} tick() {$(n — 1)} $(n1 + ny) = $n1 % $n;

The specification
{$n}e{Q}

implies e does at most n calls to tick().

Implemented in Rocq by Chargéraud and Pottier.
In Iris by Mével, Jourdan, Pottier.
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Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()
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Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

. coinToss ()
te=14...

Nl—=

coinToss ()
te=2+...
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Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

. coinToss ()
te=14...

coinToss ()
te=24...

tr depends on the value produced by flip!

No finite worst-case time bound.
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Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

Expected time:  te=3-1+3-(1+ G- 1+1..) =20 %
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Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

Expected time: iz =

1
2
Solve recurrence fortg: tp=2.
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Our Contribution

Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)
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Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)

- Probabilistic cost credits (analogous to time credits)
— amortized reasoning, local “expectation accounting”

- General cost analysis (time complexity, entropy, “ticks” ...)
— user-definable cost models, e.g., expected entropy use

- “Natural proofs”: symbolic execution & solving recurrence relations
— case studies (gSort, hash tables, F-Y shuffle, meldable heaps, ...), tactics
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The RandML language

A (sequential) ML-like language with higher-order (recursive) functions,
higher-order state, .., and probabilistic uniform sampling.

e e Expr:= ... | rande| ticke
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The RandML language

A (sequential) ML-like language with higher-order (recursive) functions,
higher-order state, .., and probabilistic uniform sampling.

e e Expr:= ... | rande| ticke

Semantics given by monadic iteration of step : (Expr x State) — D(Expr x State).

1 ife/:eexand I :
step((Ax. e7) e,,0)(€’,0') £ .W[ 2/X] o =0
0 otherwise,

= forke{0,1,...,N},
step(rand N, o) (k, o) & { N1 .{ }
0 otherwise.
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Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).
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Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Condition required for bind rule:

~{Pre{vQ} FW.{Q}KM{R}
= {P} Kle] {R}

T-BIND
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A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:
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Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:

CoSty 2 A_.1

COStapp £ )e.1 i decomp(e) = eq e, for some e, e;, and 0 otherwise.
COStiang = Ae. log,(N +1) if decomp(e) =randN for some N, and 0 otherwise.
CoStyick = Ne. |7] if decomp(e) = tickz forsomeze Z, and 0 otherwise.

Here, decomp picks out the “head redex”, e.g.,
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Expected Cost of a Program

Definition (Expected Cost)

0 ifn=0oreeVal,

ECE (e, 0) 2 |
cost(e) + Egep(eo) [ECH™] ifn=m+1.
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Expected Cost of a Program

Definition (Expected Cost)
0
ECY (e,0) £

ifn=0oreeVal,
cost(e) + Egep(eo) [ECH™] ifn=m+1.
ECt(e,0) 2 sup ECESt(e, o)

new
where  Egep(e,o) [EC™ ]

(or 400 if no bound exists)
> pecrg step(e, 0)(p) - ECHY" (p)

“The expectation of the random variable EC{**"over the distribution step(e, o)"
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The Logic




Cost as a Resource

Cost resource algebra: Auth(Rx>o, +)
For the user: Standard Iris plus one new assertion: $(x), fragmental part.
In the WP, use authoritative part (“cost interpretation”): S.(x),

Credit splitting rule
SO +x2) - S(x4) = S(x)
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The Logic

- Standard Iris plus one new assertion: $(x).
- Weakest precondition (and Hoare triples, rules) are parametrised by cost.

- Standard rules! With added cost requirements.

HT-LOAD

F{e— v S(cost(10)} 1e{w.w=vx Ll v}

{S(cost(tickz))} tickz{(). True}

HT-RAND

- {S(cost(rand N))} rand N {n.0 < n < N}
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Distributing Cost Credits in Expectation

cost(rand N) + >N %0 < x,
{S(x1)} rand N {n. $(Xo(n)) * 0 < n < N}

HT-RAND-EXP

>l

:O

step (rand N) [XZ]
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Distributing Cost Credits in Expectation

cost(rand N)+Zn 0 )<X1

N+ HT-RAND-EXP
{S(x1)} rand N {n. $(Xo(n)) * 0 < n < N}
N
Z step (rand N) [XZ]
=N
Derived rule:
1 - Xo(true) + 3 - X(false) < xy

HT-FLIP-EXP

{S(cost(flip)) * S(x1)} flip {b.$(Xa(b))}
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Adequacy

Theorem

Let x be a non-negative real number and let ¢ be a predicate on values.
If F{S(x)}e{p} then forany state o,

1. ECost (e,0) < X, and

2. YveVval. exec(e,o)(v) >0 = ¢(v).

11:45 12/24
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coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...
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coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

1. Instantiate Tachis with costiick
(could have used, e.g., costapp)

2. Prove {$(2)} coinToss () {True}.

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

3. By adequacy, ECng , (coinToss, §) < 2.
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{$@}

(rec coinToss _ = tick1; if flip then () else coinToss ()) ()

split credits, Lob
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{5@}

)
(rec coinToss _
) *
(

{$01) =

rec coinToss _

= tick1; if flip then () else coinToss ()) ()

S(1) * >IH} where IH = {$(2)} coinToss () {True}

= tick1; if flip then () else coinToss ()) ()

split credits, Lob

app, pay for tick
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@)

(rec coinToss _ = tick1; if flip then () else coinToss ()) ()
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) ()

{S$(1) = IH}

if flip then () else coinToss ()

split credits, Lob

app, pay for tick

HT-FLIP-EXP W/ X,
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5@

(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}

(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}

if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b

14.(4/6) /24



@)

(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}

(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}

if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}

0 done
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@)
(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}
if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}
0 done
b =false: {$(2) * {$(2)} coinToss () {True}}
coinToss () by IH with $(2)
{True}
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11:49

[5@)
(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = »IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}
if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}
0 done
b =false: {$(2) * {$(2)} coinToss () {True}}
coinToss () by IH with $(2)

{True} Qed.
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Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:
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Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:
Implement via naive rejection sampler:

recsampleThree _ = letv=(rand1)+2x*(rand1)in

ifv < 3thenvelse sampleThree ()
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Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

Implement via naive rejection sampler:

recsampleThree _ = letv = (I’aﬂd 1)+2*(rand 1)m

ifv < 3thenvelse sampleThree ()

Entropy of a distribution p is defined as H(u) = — >y, #(X) - logy u(X).-
unif(0,2) has entropy log, 3 ~ 1.6.
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Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

Implement via naive rejection sampler:

recsampleThree _ = letv = (I’aﬂd 1)+2*(rand 1)m

ifv < 3thenvelse sampleThree ()
Entropy of a distribution p is defined as H(u) = — >y, #(X) - logy u(X).-
unif(0,2) has entropy log, 3 ~ 1.6.
Let E = EC (sampleThree()).

Recurrence: £ = 322+ (2 +E) +2)=58=2666...

4
32+
With costang, we can prove {$(8)} sampleThree () {n.0 < n < 2}.
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Amortized Expected Entropy: Batch Sampling

rec prefetch mem =
letv = flipN 8in
if v <243 then
v

else prefetch m

Idea: to batch 5 samplings, pick v € [0,3°[. Flip 8 coins.

Since 3° = 243 is close to 28 = 256, not much entropy is wasted.

Usual recurrence analysis gives E = 243/256 - 8 +13/256 - (8 4+ E) = £ ~ 8.4,
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Amortized Expected Entropy: Batch Sampling

rec prefetch mem =
letv = flipN 8in
{5359} if v <243 then (0 {n.(0<n<243)}
v

else prefetch m

Idea: to batch 5 samplings, pick v € [0,3°[. Flip 8 coins.

Since 3° = 243 is close to 28 = 256, not much entropy is wasted.

Usual recurrence analysis gives E = 243/256 - 8 +13/256 - (8 4+ E) = £ ~ 8.4,

Again with cost,.q, we can prove this in Tachis.
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Amortized Expected Entropy: Batch Sampling

initSampler £ let mem = ref0in
letcnt =refOin
A _.if lent == 0then
(mem <« prefetch (); cnt < 5);
letv=1memin
cnt < lent—1;
mem < v ‘quot 3;

v 'mod” 3
Idea: draw 5 samples at once, reveal one at a time.

Amortized expected cost should be E/5 = % ~ 1.7, much closer to 1.6 than
2.66... was.

18/24



Amortized Reasoning via First-Class Credits

Extracting a sample in {0,1,2} does not have constant costs:
E,0,0,0,0,E,0,0,...

Worst-case bound is higher than naive rejection sampling, but the average is
lower.
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Amortized Reasoning via First-Class Credits

Extracting a sample in {0,1,2} does not have constant costs:
E,0,0,0,0,E,0,0,...

Worst-case bound is higher than naive rejection sampling, but the average is
lower.

With amortized point of view:
. &E .EEEEEE
SEWE S, U oy 2y eg 20 m0 s
Intuition: pay “extra” per operation, to pay for costly E operations.

19.2/2) /24



Amortized Expected Entropy: Batch Sampling

Again with cost;,ng, We can prove

{S(4-258) Y initsampler {f.m  {$(252) 7} f(){n.(0<n<3)*7}}

T 2435

where 7 £ Jcnt,c,mem,m.cnt > € <5 xmem—m xm <3¢ x S((4—c)- 258)

initSampler £ let mem = ref0in
letcnt = ref0in
A _.if lecnt == 0then
(prefetch mem; cnt <+ 5);

letv =!memin
cnt«lent—1;
mem <« v quot 3;
v 'mod’ 3

20/24



Case Studies

Interesting and realistic examples:

- Coupon Collector (ht-rand-exp)

- Fisher-Yates Shuffle (expected entropy w/o log, in lang)

- Batch Sampling (expected entropy, amortization)

- quicksort (time and entropy, reusable recurrence reasoning)
- hash map ("deref cost” via tick, amortised for put & get)

- meldable heaps (nr. of cmp)

- k-way merge (heap client)
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The Model




The Weakest Precondition

wp e1 {®} £ (e eVal A d(eq))
\/(@1 ¢Val /\VO’1,X1.S(0’1) * $.(Xq) —k

ECM((€1, 0'1), X1, ()\ €r,02,X2 . D(S(Uz) * $. (Xz) * WP e {CD})))
P1 Z

S. (x1) connects $(x) to operational semantics of es.
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The Weakest Precondition

wp e1 {®} £ (e eVal A d(eq))
V (e ¢Val A Vo, x1. S(01) * $.(Xq) —k

ECM((€1, 0'1), X1, ()\ €2,02,X2 . D(S(Uz) * $. (Xz) * WP €, {CD})))
P1 Z

S. (x1) connects $(x) to operational semantics of es.

where ECM(p1,%1,2) £ 3 (X5 : (fg — Rxo) . (1)
red(pr) * 3r. Vpp. Xo(p2) < 1 % (2)
cost(p) + 2, ecq Step(p1)(p2) - Xa(p2) < X1 (3)
V2. step(p1)(p2) > 0 —x Z(p2,X2(p2)) (4)
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Future Work

Read the Tachis paper at arxiv:2405.20083!

- Contextual equivalence for probabilistic polynomial time

- Work complexity for concurrency (instead of randomisation)
our cost models should be flexible enough to deal, e.g., spin locks

- (work,span) for fork/join parallelism a la Parallel ML

- Are there evaluation context sensitive cost models that anyone cares for?
- Cost variance instead of expectation?

- Tail bounds (“with high probability, the cost is below some bound”)

- Unified story for “composition in expectation” (Eris / Tachis / ...)
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Cost Resource Algebra Laws

Unital Resource Algebra: Auth(Rxo, +)
Cost Interpretation: S, (x1)
Cost Budget $(x)

Agreement rule $(x1) * Se(X2) F X1 < X

Spending rule: update $(x7) * So (X1 4 x2) to S(x2)
Acquisition rule: updating S (x1) to S(x2) * Se (X1 + X2).
Splitting rule: $(x1 4 x2) - S(x1) * $(x2)
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