Tachis: Higher-Order Separation Logic with Credits for
Expected Costs

Philipp G. Haselwarter', Kwing Hei Li', Markus de Medeiros?, Simon Oddershede Gregersen?,
Alejandro Aguirre’, Joseph Tassarotti?, and Lars Birkedal’

TAarhus University, 2New York University

1/24

Cost Analysis

Algorithms 101:
“Argue that A(n) runs in time t(n)."

11:32 2.(1/5)/24

Cost Analysis

Algorithms 101:
“Argue that A(n) runs in time t(n)."

Algorithms 201:
“Show that .A(n) runs in expected time t(n). "

1:32 2.2/5)/24

Cost Analysis

Algorithms 101:
“Argue that A(n) runs in time t(n)."

Algorithms 201:
“Show that .A(n) runs in expected time t(n). "

Algorithms 301:
“Prove that .A(n) runs in amortized expected time t(n). "

1:32 2.3/5)/24

Cost Analysis

Algorithms 101:
“Argue that A(n) runs in time t(n)."

Algorithms 201:
“Show that .A(n) runs in expected time t(n). "

Algorithms 301:
“Prove that .A(n) runs in amortized expected time t(n). "

Tachis:
“Formalize that A(n) runs in expected amortized time t(n).

1:32 2.(4/5) /24

Cost Analysis

Algorithms 101:
“Argue that A(n) runs in time t(n)."

Algorithms 201:
“Show that .A(n) runs in expected time t(n). "

Algorithms 301:
“Prove that .A(n) runs in amortized expected time t(n). "

Tachis:
“Formalize that A(n) runs in expected amortized time t(n).

1:32 2.5/5)/24

Drawing Inspiration from Atkey’s Time Credits

To reason about costs, Atkey proposed separation logic with time credit
assertions $n:

{($n} tick() {$(n — 1)} $(n1 + ny) = $n1 % $n;

1:32 3.1/3)/24

Drawing Inspiration from Atkey’s Time Credits

To reason about costs, Atkey proposed separation logic with time credit
assertions $n:

{$n} tick() {$(n — 1)} $(n + ny) = $nq % $n,
The specification

{$n} e {Q}

implies e does at most n calls to tick().

3.2/3) /24

Drawing Inspiration from Atkey’s Time Credits

To reason about costs, Atkey proposed separation logic with time credit
assertions $n:

{($n} tick() {$(n — 1)} $(n1 + ny) = $n1 % $n;

The specification
{$n}e{Q}

implies e does at most n calls to tick().

Implemented in Rocq by Chargéraud and Pottier.
In Iris by Mével, Jourdan, Pottier.

3.3/3)/24

Intro

Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

11:35 4(1/5)/24

Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

. coinToss ()
te=14...

Nl—=

coinToss ()
te=2+...

11:35 4.(2/5)/24

Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

. coinToss ()
te=14...

coinToss ()
te=24...

tr depends on the value produced by flip!

No finite worst-case time bound.

11:35 4.(3/5)/24

Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

Expected time: te=3-1+3-(1+ G- 1+1..) =20 %

11:35 4.(4/5)[24

Expected Runtime Warm-Up

Consider rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()

Fvaluate: =

Expected time: iz =

1
2
Solve recurrence fortg: tp=2.

11:35 4.(5/5)/24

Our Contribution

Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)

1:37 5.(1/4)[24

Our Contribution

Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)

- Probabilistic cost credits (analogous to time credits)
— amortized reasoning, local “expectation accounting”

1:37 5.2/4) /24

Our Contribution

Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)

- Probabilistic cost credits (analogous to time credits)
— amortized reasoning, local “expectation accounting”

- General cost analysis (time complexity, entropy, “ticks” ...)
— user-definable cost models, e.g., expected entropy use

1:37 5.(3/4) /24

Our Contribution

Tachis: Higher-Order Separation Logic with Credits for Expected Costs

- Cost analysis for “randomized ML"
— expressive language (higher order functions, local state, general recursion)

- Probabilistic cost credits (analogous to time credits)
— amortized reasoning, local “expectation accounting”

- General cost analysis (time complexity, entropy, “ticks” ...)
— user-definable cost models, e.g., expected entropy use

- “Natural proofs”: symbolic execution & solving recurrence relations
— case studies (gSort, hash tables, F-Y shuffle, meldable heaps, ...), tactics

1:37 5.(4/4)[24

Some Definitions

The RandML language

A (sequential) ML-like language with higher-order (recursive) functions,
higher-order state, .., and probabilistic uniform sampling.

e e Expr:= ... | rande| ticke

11:38 6.(1/2)/24

The RandML language

A (sequential) ML-like language with higher-order (recursive) functions,
higher-order state, .., and probabilistic uniform sampling.

e e Expr:= ... | rande| ticke

Semantics given by monadic iteration of step : (Expr x State) — D(Expr x State).

1 ife/:eexand I :
step((Ax. e7) e,,0)(€’,0') £ .W[2/X] o =0
0 otherwise,

= forke{0,1,...,N},
step(rand N, o) (k, o) & { N1 .{ }
0 otherwise.

6.2/2)/24

Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

11:40 7.01/6) /24

Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Condition required for bind rule:

~{Pre{vQ} FW.{Q}KM{R}
= {P} Kle] {R}

T-BIND

11:40 7(2/6)/24

Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:

CoSty 2 A_.1

11:40 7.3/6)/24

Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:

CoSty 2 A_.1

COStapp £)e.1 i decomp(e) = eq e, for some e, e;, and 0 otherwise.

Here, decomp picks out the “head redex”, e.g.,
decomp(letx =!1Zinx+ 1) =1¢.

11:40 7(4/16) /24

Cost Models

11:40

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:

CoSty 2 A_.1
COStapp £)e.1 i decomp(e) = eq e, for some e, e;, and 0 otherwise.

COStiang = Ae. log,(N +1) if decomp(e) =randN for some N, and 0 otherwise.

Here, decomp picks out the “head redex”, e.g.,
decomp(letx =!1Zinx+ 1) =1¢.

7(5/6)/24

Cost Models

Definition
A function cost : Expr — R is a cost model if cost(K[e]) = cost(e).

Examples:

CoSty 2 A_.1

COStapp £)e.1 i decomp(e) = eq e, for some e, e;, and 0 otherwise.
COStiang = Ae. log,(N +1) if decomp(e) =randN for some N, and 0 otherwise.
CoStyick = Ne. |7] if decomp(e) = tickz forsomeze Z, and 0 otherwise.

Here, decomp picks out the “head redex”, e.g.,
decomp(letx =!Zinx+1)=1¢.

11:40 7(6/6) /24

Expected Cost of a Program

Definition (Expected Cost)

0 ifn=0oreeVal,

ECE (e, 0) 2 |
cost(e) + Egep(eo) [ECH™] ifn=m+1.

11:42 8.1/3)/24

Expected Cost of a Program

Definition (Expected Cost)

0

ifn=0oreeVal,
ECt(e,0) £

cost(e) + Egep(eo) [ECH™] ifn=m+1.

EC™(e,0) £ sup EC(e, 0)

(or +00 if no bound exists)
new

8.(2/3)/24

Expected Cost of a Program

Definition (Expected Cost)
0
ECY (e,0) £

ifn=0oreeVal,
cost(e) + Egep(eo) [ECH™] ifn=m+1.
ECt(e,0) 2 sup ECESt(e, o)

new
where Egep(e,o) [EC™]

(or 400 if no bound exists)
> pecrg step(e, 0)(p) - ECHY" (p)

“The expectation of the random variable EC{**"over the distribution step(e, o)"

8.(3/3)/24

The Logic

Cost as a Resource

Cost resource algebra: Auth(Rx>o, +)
For the user: Standard Iris plus one new assertion: $(x), fragmental part.
In the WP, use authoritative part (“cost interpretation”): S.(x),

Credit splitting rule
SO +x2) - S(x4) = S(x)

11:42 9/24

The Logic

- Standard Iris plus one new assertion: $(x).

11:43 10.(1/5)/24

The Logic

- Standard Iris plus one new assertion: $(x).

- Weakest precondition (and Hoare triples, rules) are parametrised by cost.

11:43 10.2/5)/24

The Logic

- Standard Iris plus one new assertion: $(x).
- Weakest precondition (and Hoare triples, rules) are parametrised by cost.

- Standard rules! With added cost requirements.

HT-LOAD

F{e— v S(cost(10)} 1e{w.w=vx Ll v}

{S(cost(tickz))} tickz{(). True}

HT-RAND

- {S(cost(rand N))} rand N {n.0 < n < N}

11:43 10.(3/5)/24

The Logic

- Standard Iris plus one new assertion: $(x).
- Weakest precondition (and Hoare triples, rules) are parametrised by cost.

- Standard rules! With added cost requirements.

HT-LOAD

F{e— v S(cost(1€)} 1e{w.w=vx Ll v}

HT-TICK

{$(cost(tickz))} tickz {(). True}

HT-RAND
- {$(cost(ran 0<n<N}

TOO WEAK! We expect better.

11:43 10.(4/5) /24

The Logic

- Standard Iris plus one new assertion: $(x).
- Weakest precondition (and Hoare triples, rules) are parametrised by cost.

- Standard rules! With added cost requirements.

HT-LOAD

F{e— v S(cost(1€)} 1e{w.w=vx Ll v}

HT-TICK

{$(cost(tickz))} tickz {(). True}

HT-RAND
- {$(cost(ran 0<n<N}

TOO WEAK! We expect better.

11:43 10.(5/5)/24

Distributing Cost Credits in Expectation

cost(rand N) + >N %0 < x,
{S(x1)} rand N {n. $(Xo(n)) * 0 < n < N}

HT-RAND-EXP

>l

:O

step (rand N) [XZ]

1144 11.1/2) /24

Distributing Cost Credits in Expectation

cost(rand N)+Zn 0)<X1

N+ HT-RAND-EXP
{S(x1)} rand N {n. $(Xo(n)) * 0 < n < N}
N
Z step (rand N) [XZ]
=N
Derived rule:
1 - Xo(true) + 3 - X(false) < xy

HT-FLIP-EXP

{S(cost(flip)) * S(x1)} flip {b.$(Xa(b))}

1144 1.2/2) /24

Adequacy

Theorem

Let x be a non-negative real number and let ¢ be a predicate on values.
If F{S(x)}e{p} then forany state o,

1. ECost (e,0) < X, and

2. YveVval. exec(e,o)(v) >0 = ¢(v).

11:45 12/24

Examples

coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

11:47 13.1/5) /24

coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

1. Instantiate Tachis with costiick
(could have used, e.g., costapp)

2. Prove {$(2)} coinToss () {True}.

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

3. By adequacy, ECng , (coinToss, §) < 2.

13.2/5) /24

coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

- Xo(true) + 1 - X;(false) < xy

{$(0) * S(x)} flip {b.5(Xx(b))}

Let Xy(b) £ if b then 0 else 2.

HT-FLIP-EXP

1. Instantiate Tachis with costiick
(could have used, e.g., costapp)

2. Prove {$(2)} coinToss () {True}.

3. By adequacy, ECng , (coinToss, §) < 2.

HT-TICK

{S()} tick1{(). True}

13.(3/5)/24

coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

- Xo(true) + 1 - X;(false) < xy

{$(0) * S(x)} flip {b.5(Xx(b))}

Let Xy(b) £ if b then 0 else 2.

HT-FLIP-EXP

1. Instantiate Tachis with costiick
(could have used, e.g., costapp)

2. Prove {$(2)} coinToss () {True}.

3. By adequacy, ECng , (coinToss, §) < 2.

HT-TICK

{S()} tick1{(). True}

13.(4/5) /24

coinToss terminates in tr = % 14+ % (1+1t) =2

Let rec coinToss _ = tick1; if flip then () else coinToss ()

coinToss ()
te=...
2

Evaluate:

coinToss ()
te=1+...

- Xo(true) + 1 - X;(false) < xy

{$(0) * S(x)} flip {b.5(Xx(b))}

Let Xy(b) £ if b then 0 else 2.

HT-FLIP-EXP

1. Instantiate Tachis with costiick
(could have used, e.g., costapp)

2. Prove {$(2)} coinToss () {True}.

3. By adequacy, ECng , (coinToss, §) < 2.

HT-TICK

{S()} tick1{(). True}

13.(5/5) /24

{$@}

(rec coinToss _ = tick1; if flip then () else coinToss ()) ()

split credits, Lob

14.(1/6) /24

{5@}

)
(rec coinToss _
) *
(

{$01) =

rec coinToss _

= tick1; if flip then () else coinToss ()) ()

S(1) * >IH} where IH = {$(2)} coinToss () {True}

= tick1; if flip then () else coinToss ()) ()

split credits, Lob

app, pay for tick

14.(2/6)/24

@)

(rec coinToss _ = tick1; if flip then () else coinToss ()) ()
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) ()

{S$(1) = IH}

if flip then () else coinToss ()

split credits, Lob

app, pay for tick

HT-FLIP-EXP W/ X,

14.(3/6) /24

5@

(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}

(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}

if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b

14.(4/6) /24

@)

(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}

(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}

if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}

0 done

14.(5/6) /24

@)
(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = >IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}
if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}
0 done
b =false: {$(2) * {$(2)} coinToss () {True}}
coinToss () by IH with $(2)
{True}

11:49 14.(6/6)/24

11:49

[5@)
(rec coinToss _ = tick1; if flip then () else coinToss ()) () split credits, Lob
{$(1) = $(1) = »IH} where IH = {$(2)} coinToss () {True}
(rec coinToss _ = tick1; if flip then () else coinToss ()) () app, pay for tick
{S$(1) = IH}
if flip then () else coinToss () HT-FLIP-EXP W/ X5
b:B | {S(if bthen 0 else 2) « IH}
b:B| if bthen () else coinToss () case spliton b
b=true: {$(0) = IH}
0 done
b =false: {$(2) * {$(2)} coinToss () {True}}
coinToss () by IH with $(2)

{True} Qed.

15/24

Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

11:49 16.(1/5)/24

Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:
Implement via naive rejection sampler:

recsampleThree _ = letv=(rand1)+2x*(rand1)in

ifv < 3thenvelse sampleThree ()

11:49 16.(2/5)/24

Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

Implement via naive rejection sampler:

recsampleThree _ = letv = (I’aﬂd 1)+2*(rand 1)m

ifv < 3thenvelse sampleThree ()

11:49 16.(3/5)/24

Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

Implement via naive rejection sampler:

recsampleThree _ = letv = (I’aﬂd 1)+2*(rand 1)m

ifv < 3thenvelse sampleThree ()

Entropy of a distribution p is defined as H(u) = — >y, #(X) - logy u(X).-
unif(0,2) has entropy log, 3 ~ 1.6.

11:49 16.(4/5) /24

Entropy Usage in Rejection Sampling

Want: Uniform distribution on three elements unif(0,2) = {0:1,1:

Implement via naive rejection sampler:

recsampleThree _ = letv = (I’aﬂd 1)+2*(rand 1)m

ifv < 3thenvelse sampleThree ()
Entropy of a distribution p is defined as H(u) = — >y, #(X) - logy u(X).-
unif(0,2) has entropy log, 3 ~ 1.6.
Let E = EC (sampleThree()).

Recurrence: £ = 322+ (2 +E) +2)=58=2666...

4
32+
With costang, we can prove {$(8)} sampleThree () {n.0 < n < 2}.

11:49 16.(5/5)/24

Amortized Expected Entropy: Batch Sampling

rec prefetch mem =
letv = flipN 8in
if v <243 then
v

else prefetch m

Idea: to batch 5 samplings, pick v € [0,3°[. Flip 8 coins.

Since 3° = 243 is close to 28 = 256, not much entropy is wasted.

Usual recurrence analysis gives E = 243/256 - 8 +13/256 - (8 4+ E) = £ ~ 8.4,

11:49 17.1/2) /24

Amortized Expected Entropy: Batch Sampling

rec prefetch mem =
letv = flipN 8in
{5359} if v <243 then (0 {n.(0<n<243)}
v

else prefetch m

Idea: to batch 5 samplings, pick v € [0,3°[. Flip 8 coins.

Since 3° = 243 is close to 28 = 256, not much entropy is wasted.

Usual recurrence analysis gives E = 243/256 - 8 +13/256 - (8 4+ E) = £ ~ 8.4,

Again with cost,.q, we can prove this in Tachis.

17.2/2) 24

Amortized Expected Entropy: Batch Sampling

initSampler £ let mem = ref0in
letcnt =refOin
A _.if lent == 0then
(mem <« prefetch (); cnt < 5);
letv=1memin
cnt < lent—1;
mem < v ‘quot 3;

v 'mod” 3
Idea: draw 5 samples at once, reveal one at a time.

Amortized expected cost should be E/5 = % ~ 1.7, much closer to 1.6 than
2.66... was.

18/24

Amortized Reasoning via First-Class Credits

Extracting a sample in {0,1,2} does not have constant costs:
E,0,0,0,0,E,0,0,...

Worst-case bound is higher than naive rejection sampling, but the average is
lower.

11:49 19.(1/2) /24

Amortized Reasoning via First-Class Credits

Extracting a sample in {0,1,2} does not have constant costs:
E,0,0,0,0,E,0,0,...

Worst-case bound is higher than naive rejection sampling, but the average is
lower.

With amortized point of view:
. &E .EEEEEE
SEWE S, U oy 2y eg 20 m0 s
Intuition: pay “extra” per operation, to pay for costly E operations.

19.2/2) /24

Amortized Expected Entropy: Batch Sampling

Again with cost;,ng, We can prove

{S(4-258) Y initsampler {f.m {$(252) 7} f(){n.(0<n<3)*7}}

T 2435

where 7 £ Jcnt,c,mem,m.cnt > € <5 xmem—m xm <3¢ x S((4—c)- 258)

initSampler £ let mem = ref0in
letcnt = ref0in
A _.if lecnt == 0then
(prefetch mem; cnt <+ 5);

letv =!memin
cnt«lent—1;
mem <« v quot 3;
v 'mod’ 3

20/24

Case Studies

Interesting and realistic examples:

- Coupon Collector (ht-rand-exp)

- Fisher-Yates Shuffle (expected entropy w/o log, in lang)

- Batch Sampling (expected entropy, amortization)

- quicksort (time and entropy, reusable recurrence reasoning)
- hash map ("deref cost” via tick, amortised for put & get)

- meldable heaps (nr. of cmp)

- k-way merge (heap client)

11:49 21/24

The Model

The Weakest Precondition

wp e1 {®} £ (e eVal A d(eq))
\/(@1 ¢Val /\VO’1,X1.S(0’1) * $.(Xq) —k

ECM((€1, 0'1), X1, ()\ €r,02,X2 . D(S(Uz) * $. (Xz) * WP e {CD})))
P1 Z

S. (x1) connects $(x) to operational semantics of es.

11:51 22.(1/3)/24

The Weakest Precondition

wp e1 {®} £ (e eVal A d(eq))
V (e ¢Val A Vo, x1. S(01) * $.(Xq) —k

ECM((€1, 0'1), X1, ()\ €2,02,X2 . D(S(Uz) * $. (Xz) * WP €, {CD})))
P1 Z

S. (x1) connects $(x) to operational semantics of es.

where ECM(p1,%1,2) £ 3 (X5 : (fg — Rxo) . (1)
red(pr) * 3r. Vpp. Xo(p2) < 1 % (2)
cost(p) + 2, ecq Step(p1)(p2) - Xa(p2) < X1 (3)
V2. step(p1)(p2) > 0 —x Z(p2,X2(p2)) (4)

11:51 22.2/3)/24

The Weakest Precondition

wp e1 {®} £ (e eVal A d(eq))
V (e ¢Val A Vo, x1. S(01) * $.(Xq) —k

ECM((€1, 0'1), X1, ()\ €2,02,X2 . D(S(Uz) * $. (Xz) * WP €, {CD})))
P1 Z

S. (x1) connects $(x) to operational semantics of es.

where ECM(p1,%1,2) £ 3 (X5 : (fg — Rxo) . (1)
red(pr) * 3r. Vpp. Xo(p2) < 1 % (2)
cost(p) + X_,, ecrq Step(p1)(p2) - Xa(p2) < X1 (3)
V2. step(p1)(p2) > 0 —* Z(p2, X2(p2)) (4)

11:51 22.(3/3)/24

Future Work

Read the Tachis paper at arxiv:2405.20083!

- Contextual equivalence for probabilistic polynomial time

- Work complexity for concurrency (instead of randomisation)
our cost models should be flexible enough to deal, e.g., spin locks

- (work,span) for fork/join parallelism a la Parallel ML

- Are there evaluation context sensitive cost models that anyone cares for?
- Cost variance instead of expectation?

- Tail bounds (“with high probability, the cost is below some bound”)

- Unified story for “composition in expectation” (Eris / Tachis / ...)

1:51 23/24

Cost Resource Algebra Laws

Unital Resource Algebra: Auth(Rxo, +)
Cost Interpretation: S, (x1)
Cost Budget $(x)

Agreement rule $(x1) * Se(X2) F X1 < X

Spending rule: update $(x7) * So (X1 4 x2) to S(x2)
Acquisition rule: updating S (x1) to S(x2) * Se (X1 + X2).
Splitting rule: $(x1 4 x2) - S(x1) * $(x2)

2424

	Intro
	Some Definitions
	The Logic
	Examples
	The Model

