
A general definition of dependent type theories

Philipp Haselwarter1

j.w.w. Andrej Bauer1, Peter Lumsdaine2

1University of Ljubljana, Slovenia
2Stockholm University, Sweden

Logic and Semantics seminar,
Aarhus, 15.04.2019

1This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0326.

1 / 15

1. Hi, thank you Bas. I’m a finishing PhD student with Andrej Bauer in
Ljubljana. I have been working on different aspects of type theory: theory,
formalisation, implementation. I will be in Aarhus for the next two weeks.

2. Today I will present some ongoing work with Andrej and Peter on a
general definition of dependent type theories.

Goals & approach

• Goal: Give a precise and simple definition of type theories, so
that we can prove basic meta theorems and give general
semantics; directly applicable to known theories.

• Method: Traditional, stratified approach via raw syntax, raw
rules, raw type theories, well-formed rules, well-formed type
theories.

• We deliberately avoid using fancy technology (QIITs, ...).
• Everything in this talk should be “just what you’d expect if

you wrote it all out”.
• Formalised in Coq.
• Implemented in the upcoming Andromeda 2.

2 / 15

1. Our goal with this project is to give a precise and simple definition of type
theories, and then use this definition to prove meta theorems that hold
for all of these theories, or identify properties that make them provable.
We also want to be able to give a general semantics, and we want all of
this machinery to be readily applicable to known theories.

2. The way we approached this task is very traditional, in the sense that we
first define a signature, then raw syntax over a signature, then rules
ecetera, in a stratified way. While there are certainly other ways one
might approach this questions with their own merits, I will talk about
what we did today.

3. If we succeed with the first, and the last three points here on this slide,
then I think our method has its merits. So if you’re familiar with type
theory, there should be few surprises in this talk. If there are surprises,
then please do interrupt me and ask about me about it.

4. I think people here have heard about the Coq proof assistant. Andromeda
is a prover we develop in Ljubljana. For my PhD thesis, I did a lot of
things to it, such as adding a meta-language with algebraic effects and
handlers, and what we internally call Andromeda 2 is an implementation
of general type theories. But lately I’m not allowed to code anymore, so I
focus on theory, and writing my thesis. The fact we were able to
implement this using OCaml as our meta-language is a benefit of keeping
it “simple”, and generally we’re quite foundationally independent.

5. My talk will follow the progression listed here under “method”, and finish
on some of the meta-theorems that we have proved.

What kind of type theories?

Four judgement forms:

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

(Think of) contexts as lists of types, and of variables as de Bruijn
indices.
Whenever you see lists of some X, think families on X (potentially
infinitary contexts, syntax, rules, theories) where “a family on X” is
just a map 𝐼 → 𝑋.

3 / 15

1. So let’s take a moment to delimit the kinds of theories that we set out to
cover.

2. We have the familiar four judgement forms, first the two object
judgement forms, and then the equality judgement forms. explain each

3. Our contexts are intuitionistic. I will present them as lists in the talk,
even though our formal treatment is a bit more general. The same goes
for variables: Today we’ll just use de Bruijn indices (did I say that right,
Bas?), but we’re not married to one particular presentation of variables.

4. This covers a lot of theories that we’re interested in.
5. Bonus: Examples: MLTT, MLTT with equality reflection, universes, book

HoTT
6. Bonus: Counterexamples: cumulative universes (any kind of subtyping),

other judgement forms such as fibrancy, guardedness, etc,
non-intuitionistic contexts

Arities and signatures
Definition
An arity is a family of pairs ⟨(𝑐𝑙𝑎𝑠𝑠, 𝑏𝑖𝑛𝑑)𝑖 ∣ 𝑖 ∈ 𝐼⟩, where
𝑐𝑙𝑎𝑠𝑠 ∈ {ty, tm} and 𝑏𝑖𝑛𝑑 ∈ ℕ.

Definition
A signature Σ is a family of pairs ⟨(𝑐𝑙𝑎𝑠𝑠, 𝑎𝑟𝑖𝑡𝑦)𝑖 ∣ 𝑖 ∈ 𝐼⟩.

ℕ ↦ (ty, []),
𝑆 ↦ (tm, [(tm, 0)]),
Π ↦ (ty, [(ty, 0), (ty, 1)]),
λ ↦ (tm, [(ty, 0), (ty, 1), (tm, 1)]),

app ↦ (tm, [(ty, 0), (ty, 1), (tm, 0), (tm, 0)]).

4 / 15

1. No typing info about term arguments or variables bound

Raw expressions

Definition (Raw expressions)
Expr𝑐𝑙𝑎𝑠𝑠

Σ (𝑛) is inductively generated by

var𝑖 for 0 ≤ 𝑖 < 𝑛
𝑆(𝑒) for 𝑆 ∈ Σ, 𝑒 ∈ ∏𝑖∈arg 𝑆 Exprcl𝑆 𝑖

Σ (𝛾 ⊕ bind𝑆 𝑖)

Recall λ ↦ (tm, [(ty, 0), (ty, 1), (tm, 1)]).
Example:

λ(ℕ, ℕ, 𝑆(𝑆(var0))) ∈ Exprtm
Σ (0)

λ(A, B(var0), var0) ∈ Exprtm
Σ+𝛼(0)

where 𝛼 = [A ↦ (𝑡𝑦, []), B ↦ (𝑡𝑦, [(𝑡𝑚, 0)])]

5 / 15

1. Expressions are a family indexed by signature and by the positions of a
raw context. The positions of a context tells us what variables are
available.
For a de Bruijn system, this is simply a finite set of size the length of the
context.
NB: this is one way to “cut the knot”: we don’t have to know what
contexts are yet (which will in turn rely on the definition of expressions),
but we can still define expressions indexed over their positions.

2. This Pi here in the definition is a meta-level dependent product
3. pause
4. 𝛼 is a meta-variable extension, A, B are metavariables. In particular, they

can take only term arguments, not types, and cannot bind anything.
Something good happened here: we have a formal account of meta
variables that allows us to write B(var0) without hand-waving.

Raw expressions

Definition (Raw expressions)
Expr𝑐𝑙𝑎𝑠𝑠

Σ (𝑛) is inductively generated by

var𝑖 for 0 ≤ 𝑖 < 𝑛
𝑆(𝑒) for 𝑆 ∈ Σ, 𝑒 ∈ ∏𝑖∈arg 𝑆 Exprcl𝑆 𝑖

Σ (𝛾 ⊕ bind𝑆 𝑖)

Recall λ ↦ (tm, [(ty, 0), (ty, 1), (tm, 1)]).
Example:

λ(ℕ, ℕ, 𝑆(𝑆(var0))) ∈ Exprtm
Σ (0)

λ(A, B(var0), var0) ∈ Exprtm
Σ+𝛼(0)

where 𝛼 = [A ↦ (𝑡𝑦, []), B ↦ (𝑡𝑦, [(𝑡𝑚, 0)])]

5 / 15

1. Expressions are a family indexed by signature and by the positions of a
raw context. The positions of a context tells us what variables are
available.
For a de Bruijn system, this is simply a finite set of size the length of the
context.
NB: this is one way to “cut the knot”: we don’t have to know what
contexts are yet (which will in turn rely on the definition of expressions),
but we can still define expressions indexed over their positions.

2. This Pi here in the definition is a meta-level dependent product
3. pause
4. 𝛼 is a meta-variable extension, A, B are metavariables. In particular, they

can take only term arguments, not types, and cannot bind anything.
Something good happened here: we have a formal account of meta
variables that allows us to write B(var0) without hand-waving.

Raw contexts and (hypothetical) judgements

Definition
A raw context Γ is a shape 𝑛 (written |Γ|) with a map
Fin(𝑛) → Exprty

Σ(𝑛), denoted as [0 ∶ 𝐴0, … , 𝑛 − 1∶ 𝐴𝑛−1], where
𝐴𝑖 ∈ Exprty

Σ(|Γ|).

Definition
A raw substitution 𝑓 ∶ Γ → Δ over a signature Σ is a map
𝑓 ∶ |Δ| → Exprtm

Σ (Γ). The (contravariant) functorial action of 𝑓
on an expression 𝑒 ∈ Expr𝑐

Σ(|Δ|) gives the expression
𝑓∗𝑒 ∈ Expr𝑐

Σ(|Γ|), as follows:

𝑓∗(var𝑖) ≔ 𝑓(𝑖),
𝑓∗(𝑆(𝑒)) ≔ 𝑆(⟨(𝑓 ⊕ idbind𝑆 𝑖)∗(𝑒𝑖)⟩𝑖∈arg 𝑆).

6 / 15

1. There really should be no surprises here: Contexts are lists of types, one
for each variable.

2. pause
3. A substitution from gamma to delta associates to each variable in delta a

term expression over gamma. Substitutions act on expressions by
replacing the variables of delta by the corresponding terms. We are
careful to extend the substitution appropriately when we descend under
binders. This is the idbind𝑆 𝑖 part of the second line of the definition.

4. There are also maps between signatures, and they also act on
judgements, and these interact nicely, but I won’t go into that here. It’s
the kind of thing that shows up in the formalisation, but is otherwise easy
to sweep under the rug.

5. Bonus: The extension 𝑓 ⊕ 𝜂 ∶ 𝛾 ⊕ 𝜂 → 𝛿 ⊕ 𝜂 by a shape 𝜂 is the
substitution

(𝑓 ⊕ 𝜂)(𝑖) = 𝑓(𝑖) if 𝑖 ∈ |𝛿|,
(𝑓 ⊕ 𝜂)(𝑗) = var𝑗 if 𝑗 ∈ |𝜂|.

6. Bonus: Substitutions 𝑓 ∶ 𝛾 → 𝛿 and 𝑔 ∶ 𝛿 → 𝜂 may be composed to give
a substitution 𝑔 ∘ 𝑓 ∶ 𝛾 → 𝜂, defined by (𝑔 ∘ 𝑓)(𝑘) = 𝑓∗(𝑔(𝑘)).

Raw contexts and (hypothetical) judgements

Definition
A raw context Γ is a shape 𝑛 (written |Γ|) with a map
Fin(𝑛) → Exprty

Σ(𝑛), denoted as [0 ∶ 𝐴0, … , 𝑛 − 1∶ 𝐴𝑛−1], where
𝐴𝑖 ∈ Exprty

Σ(|Γ|).

Definition
A raw substitution 𝑓 ∶ Γ → Δ over a signature Σ is a map
𝑓 ∶ |Δ| → Exprtm

Σ (Γ). The (contravariant) functorial action of 𝑓
on an expression 𝑒 ∈ Expr𝑐

Σ(|Δ|) gives the expression
𝑓∗𝑒 ∈ Expr𝑐

Σ(|Γ|), as follows:

𝑓∗(var𝑖) ≔ 𝑓(𝑖),
𝑓∗(𝑆(𝑒)) ≔ 𝑆(⟨(𝑓 ⊕ idbind𝑆 𝑖)∗(𝑒𝑖)⟩𝑖∈arg 𝑆).

6 / 15

1. There really should be no surprises here: Contexts are lists of types, one
for each variable.

2. pause
3. A substitution from gamma to delta associates to each variable in delta a

term expression over gamma. Substitutions act on expressions by
replacing the variables of delta by the corresponding terms. We are
careful to extend the substitution appropriately when we descend under
binders. This is the idbind𝑆 𝑖 part of the second line of the definition.

4. There are also maps between signatures, and they also act on
judgements, and these interact nicely, but I won’t go into that here. It’s
the kind of thing that shows up in the formalisation, but is otherwise easy
to sweep under the rug.

5. Bonus: The extension 𝑓 ⊕ 𝜂 ∶ 𝛾 ⊕ 𝜂 → 𝛿 ⊕ 𝜂 by a shape 𝜂 is the
substitution

(𝑓 ⊕ 𝜂)(𝑖) = 𝑓(𝑖) if 𝑖 ∈ |𝛿|,
(𝑓 ⊕ 𝜂)(𝑗) = var𝑗 if 𝑗 ∈ |𝜂|.

6. Bonus: Substitutions 𝑓 ∶ 𝛾 → 𝛿 and 𝑔 ∶ 𝛿 → 𝜂 may be composed to give
a substitution 𝑔 ∘ 𝑓 ∶ 𝛾 → 𝜂, defined by (𝑔 ∘ 𝑓)(𝑘) = 𝑓∗(𝑔(𝑘)).

Judgements

Definition
Given a raw context Γ and a judgement
form 𝜙 ∈ {ty, tm, tyeq, tmeq}, a hypothetical judgement of that
form over Γ is a map 𝐽 taking each slot of 𝜙 of syntactic class 𝑐 to
an element of Expr𝑐

Σ(Γ).

For example, a possible tmeq judgement over context [0 ∶ ℕ] is

[𝑙ℎ𝑠 ↦ var0, 𝑟ℎ𝑠 ↦ var0, 𝑡𝑦 ↦ ℕ]

written more conveniently as

[0 ∶ ℕ] ⊢ var0 ≡ var0 ∶ ℕ

7 / 15

1. So like I promised, there are four kinds of judgements, which are formed
by filling in the holes with expressions of the correct syntactic class.

Raw rules

Definition
A raw rule 𝑅 over a signature Σ consists of an arity α𝑅, together
with a family of judgements over the extended signature Σ + α𝑅,
the premises of 𝑅, and one more judgement over Σ + α𝑅, the
conclusion of 𝑅.

For example, function application, app, has arity

αapp = [(ty, 0), (ty, 1), (tm, 0), (tm, 0)]

and premises & conclusion as follows

⊢ A type [0 ∶ A] ⊢ B(var0) type ⊢ s ∶ Π(A, B(var0)) ⊢ t ∶ A
⊢ app(A, B(var0), s, t) ∶ B(t)

8 / 15

1. We now get to the point where have the constituent components of type
theory and things should get a little bit more interesting. We can start
thinking about deriving judgements. Let’s define what a raw rule is.

2. pause
3. Let’s walk through the definition by following the example of the

application rule.
4. These raw rules serve as templates for the deductive rules of our type

theories. What I mean by that is that the meta-variables introduced by
the arity α𝑅 may be instantiated with any particular expressions of the
correct class and arity to derive concrete judgements. The derivations are
simply generated by the instantiated rules.

Raw rules

Definition
A raw rule 𝑅 over a signature Σ consists of an arity α𝑅, together
with a family of judgements over the extended signature Σ + α𝑅,
the premises of 𝑅, and one more judgement over Σ + α𝑅, the
conclusion of 𝑅.

For example, function application, app, has arity

αapp = [(ty, 0), (ty, 1), (tm, 0), (tm, 0)]

and premises & conclusion as follows

⊢ A type [0 ∶ A] ⊢ B(var0) type ⊢ s ∶ Π(A, B(var0)) ⊢ t ∶ A
⊢ app(A, B(var0), s, t) ∶ B(t)

8 / 15

1. We now get to the point where have the constituent components of type
theory and things should get a little bit more interesting. We can start
thinking about deriving judgements. Let’s define what a raw rule is.

2. pause
3. Let’s walk through the definition by following the example of the

application rule.
4. These raw rules serve as templates for the deductive rules of our type

theories. What I mean by that is that the meta-variables introduced by
the arity α𝑅 may be instantiated with any particular expressions of the
correct class and arity to derive concrete judgements. The derivations are
simply generated by the instantiated rules.

Structural rules

The structural rules for a signature Σ are given by:
• for each Γ, 𝑖 ∈ |Γ|, there is a rule

Γ ⊢ Γ𝑖 type
Γ ⊢ var𝑖 ∶ Γ𝑖

• for each 𝑓 ∶ Δ → Γ, and Γ ⊢ 𝐽 :

Γ ⊢ 𝐽 Δ ⊢ 𝑓(𝑖) ∶ 𝑓∗Γ𝑖 for each 𝑖 ∈ |Γ|
Δ ⊢ 𝑓∗𝐽

+ two more substitution rules
• judgemental equality is an equivalence relation
• conversion rules

9 / 15

1. The structural rules for some signature sigma are divided into four
families:

– the variable rules,
– rules for substitutions,
– rules stating that equality is an equivalence relation, and
– rules for conversion of terms and term equations between equal

types.
2. There are two more substitution rules that tell us that when pointwise

judgementally equal substitutions act on expressions, they yield equal
results.

3. There are the usual rules for introducing and using judgemental equality,
reflexivity, symmetry, and transitivity, and conversion.

4. All type theories over Σ will be assumed to contain these rules unless we
explicitly state otherwise.

app-1
⊢ A type [0 ∶ A] ⊢ B(var0) type ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A

⊢ app(A, B(var0), f, a) ∶ B(a)

app-2
(A, B ∶ same as app-1) ⊢ f ∶ A ⊢ a ∶ A

⊢ app(A, B(var0), f, a) ∶ B(a)

app-3
(A, B ∶ same) ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ Π(A, B(var0))

⊢ app(A, B(var0), f, a) ∶ B(a)
app-4
(A, B ∶ same) ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A ⊢ a ∶ Π(A, B(var0))

⊢ app(A, B(var0), f, a) ∶ B(a)
app-5
⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A
⊢ app(A, B(var0), f, a) ∶ B(a)

10 / 15

1. I can’t very well give a talk about type theory without having one slide
that’s just inference rules, so here we are.

2. Rule number one is the application rule we’ve seen before, and unless I
made a typo, there should be nothing wrong with it.

3. The second rule is a bit funny because it says that 𝑓 should have type 𝐴.
This should probably not be called “app”, but formally there’s nothing
wrong with having such a rule.

4. The third rule instead changes the type of 𝑎, and this is somehow more
troubling, because in the conclusion, we form 𝐵(𝑎). But 𝐵 expects to
bind a term of type 𝐴. So if we want 𝐵(𝑎) to be a valid type, and that’s
not unreasonable because it appears here in the conclusion, we will need
to know that the theory that this rule is a part of allows us to derive that
𝐴 and Π(A, B(var0)) are equal.

5. Rule number four introduces 𝑎 twice, at different types. That seems
problematic.

6. Finally, rule number five is something you will often encounter in the wild,
and for specific theories it may make sense. What’s fishy here, is that we
don’t have any premises asserting the type-hood of A and B. If your
theory is sufficiently well-behaved, you may be able to prove an inversion
theorem that allows you to construct such premises from the fact that A
and B appear in the Π type here in premise one, but in general, we
require that each meta-variable is introduced in its own premise.

app-1
⊢ A type [0 ∶ A] ⊢ B(var0) type ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A

⊢ app(A, B(var0), f, a) ∶ B(a)

app-2
(A, B ∶ same as app-1) ⊢ f ∶ A ⊢ a ∶ A

⊢ app(A, B(var0), f, a) ∶ B(a)

app-3
(A, B ∶ same) ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ Π(A, B(var0))

⊢ app(A, B(var0), f, a) ∶ B(a)
app-4
(A, B ∶ same) ⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A ⊢ a ∶ Π(A, B(var0))

⊢ app(A, B(var0), f, a) ∶ B(a)
app-5
⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A
⊢ app(A, B(var0), f, a) ∶ B(a)

11 / 15

1. We identified two conditions that capture these problems. The details are
technical and not very enlightening, so I’ll instead tell you what they
mean morally.

2. The first property is tightness. We say that a rule is tight, when the arity
of the rule matches the object premises: There is a correct number of
premises, with matching syntactic classes and arities. Remember that the
arity of the rule determines what meta-variables are available.

3. Rules 1, 2, and 3 are tight, 4 and 5 are not.
4. If a rule is tight, the meta-variables it introduces exactly match the

premises that are object judgements.
5. Rules three and five motivate the second property. What went wrong in

both, is that we were unable to explain that the types that appear in the
conclusion were in fact derivable. Let’s call the typehood judgement
associated to “the type that appears a term judgement” a presupposition
of that judgement. The equality judgements also have presuppositions,
and there as well, when we assert that an equation holds, we usually want
to know that the constituent parts are derivable.

6. The second property is presuppositionality. A rule R is presuppositional
over a type theory 𝑇 , if 𝑇 derives the presuppositions of the conclusion
of R from the premises of R.

Tight rules

Definition
We say that 𝑅 is tight when there exists a bijection 𝛽 between the
arguments of the arity α𝑅 and the object premises of 𝑅, such that
for each argument 𝑖 of α𝑅,

1 the context of the premise 𝛽(𝑖) has the shape bindα𝑅
𝑖;

2 the judgement form of the premise 𝛽(𝑖) is clα𝑅
𝑖;

3 the head expression of the premise 𝛽(𝑖) is
meta𝑖(⟨var𝑗⟩𝑗∈bindα𝑅 𝑖).

app-5
⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A
⊢ app(A, B(var0), f, a) ∶ B(a)

12 / 15

Presuppositional rules

Presup (Γ ⊢ 𝐴 type) = [],
Presup (Γ ⊢ 𝑠 ∶ 𝐴) = [Γ ⊢ 𝐴 type],

Presup (Γ ⊢ 𝐴 ≡ 𝐵) = [Γ ⊢ 𝐴 type, Γ ⊢ 𝐵 type],
Presup (Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴) = [Γ ⊢ 𝐴 type, Γ ⊢ 𝑠 ∶ 𝐴, Γ ⊢ 𝑡 ∶ 𝐴].

Definition
Let 𝑇 be a raw type theory over Σ and 𝑅 a raw rule: A raw rule 𝑅
is presuppositional over 𝑇 when every presupposition of the
conclusion of 𝑅 is derivable in 𝑇 (translated from Σ to Σ + α𝑅)
from the premises of 𝑅 and the presuppositions of the premises
of 𝑅

app-5
⊢ f ∶ Π(A, B(var0)) ⊢ a ∶ A
⊢ app(A, B(var0), f, a) ∶ B(a)

13 / 15

1. So here’s the formal definition of presuppositionality, but let’s not dwell
on that.

A word on preventing circularity

⊢ ty ∶ El(ty)(1) ⊢ a ∶ El(ty)
⊢ El(a) type

(2)

The presuppositions of (1) and (2) are ⊢ El(ty) type, which can be
derived using both rules. How to make sense of this?

The way we avoid such problems is of course that we require a
well-founded order on the types expressions in a context, on the
symbols in a signature, and on premises of each rule.

14 / 15

1. I want to briefly talk about how we deal with potential
non-well-foundedness. A good example for circularity is the following
theory: Let’s have type in type, Tarski style.

2. Issues with consistency aside, we can’t even make good sense of the
presuppositions here. If we look at the presuppositions of rule one here,
we see that we need to show that 𝐸𝑙(𝑡𝑦) is a type. We can do that, by
using rule two where we instantiate the meta-variable 𝑎 with the term
symbol 𝑡𝑦. But then we also need to provide a derivation for the premise,
namely that the symbol 𝑡𝑦 has type 𝐸𝑙(𝑡𝑦), which we can do, using rule
one. But now we’re using rule one to show that one of its presuppositions
holds.

3. pause
4. We can require that our signatures, our raw contexts, and our raw rules

come with a well-ordering.
5. Bonus: We can save type in type by introducing an additional constant

and a defining equation

⊢ 𝑡𝑦 ∶ 𝑇 𝑦 ⊢ 𝑎 ∶ 𝑇 𝑦
⊢ 𝐸𝑙(𝑎) type

⊢ 𝑇 𝑦 type ⊢ 𝐸𝑙(𝑡𝑦) ≡ 𝑇 𝑦

A word on preventing circularity

⊢ ty ∶ El(ty)(1) ⊢ a ∶ El(ty)
⊢ El(a) type

(2)

The presuppositions of (1) and (2) are ⊢ El(ty) type, which can be
derived using both rules. How to make sense of this?
The way we avoid such problems is of course that we require a
well-founded order on the types expressions in a context, on the
symbols in a signature, and on premises of each rule.

14 / 15

1. I want to briefly talk about how we deal with potential
non-well-foundedness. A good example for circularity is the following
theory: Let’s have type in type, Tarski style.

2. Issues with consistency aside, we can’t even make good sense of the
presuppositions here. If we look at the presuppositions of rule one here,
we see that we need to show that 𝐸𝑙(𝑡𝑦) is a type. We can do that, by
using rule two where we instantiate the meta-variable 𝑎 with the term
symbol 𝑡𝑦. But then we also need to provide a derivation for the premise,
namely that the symbol 𝑡𝑦 has type 𝐸𝑙(𝑡𝑦), which we can do, using rule
one. But now we’re using rule one to show that one of its presuppositions
holds.

3. pause
4. We can require that our signatures, our raw contexts, and our raw rules

come with a well-ordering.
5. Bonus: We can save type in type by introducing an additional constant

and a defining equation

⊢ 𝑡𝑦 ∶ 𝑇 𝑦 ⊢ 𝑎 ∶ 𝑇 𝑦
⊢ 𝐸𝑙(𝑎) type

⊢ 𝑇 𝑦 type ⊢ 𝐸𝑙(𝑡𝑦) ≡ 𝑇 𝑦

Meta theorems

Theorem
The substitution rules are admissible.

Theorem
Suppose all rules of a raw type theory 𝑇 are presuppository. If 𝑇
derives a judgement, then it derives all of its presuppositions.

Theorem
Suppose all rules of a type theory 𝑇 are tight, and the symbols in
Σ are in bijection with the object rules of 𝑇 . If 𝑇 derives
Γ ⊢ 𝐴 type, Γ ⊢ 𝐵 type, Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐵 then it also
derives Γ ⊢ 𝐴 ≡ 𝐵.

15 / 15

Semantics — more soon.

16 / 15

	Appendix

