
Andromeda 2.0

Philipp G. Haselwarter
j.w.w. Andrej Bauer Peter LeFanu

Lumsdaine

Foundations Seminar, FMF
08.11.2018

1 / 11

1. The work I will present is being done jointly with Andrej Bauer
and Peter Lumsdaine. I hope Peter won’t take offence in my
mentioning his name in the context of Andromeda, but the
connection should be clear in a moment.

2. There are roughly four parts to this talk. I will first talk about
general type theories, then briefly give you an idea of how the
Andromeda prover works. Then I’ll tell you how we
implemented general type theories in Andromeda, and finally I
want to give a quick demo.

General Type Theories: Motivation
We want meta theorems such as:
Proposition (Uniqueness of typing)
If Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐵 then Γ ⊢ 𝐴 ≡ 𝐵.

• for which type theory?
• stable under extensions of the theory?
• …

We need a mathematically precise formulation of
a class of type theories to answer such questions.
Our suggestion: General Type Theories.

2 / 11

1. We want to study dependent type theories. People have been
doing this for decades, and they prove theorems such as
“uniqueness of typing”

2. Instead of proving such statements for each theory of dependent
types – there is a new one roughly every week – we would like
to prove them once and for all for a wider class of theories.

3. More importantly, some theorems want to talk about “type
theories”, or “models of type theories”, not just about one type
theory, or models for one type theory. say something about
initiality here?

4. The class has to be large enough to encompass many
established real-world examples, such as MLTT, MLTT with
equality reflection, or with universes, or Homotopy Type
Theory. Because type theory is notoriously finicky, we are also
formalising these definitions and the theorems we prove about
them in Coq.

General Type Theories: Motivation
We want meta theorems such as:
Proposition (Uniqueness of typing)
If Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐵 then Γ ⊢ 𝐴 ≡ 𝐵.

• for which type theory?
• stable under extensions of the theory?
• …

We need a mathematically precise formulation of
a class of type theories to answer such questions.
Our suggestion: General Type Theories.

2 / 11

1. We want to study dependent type theories. People have been
doing this for decades, and they prove theorems such as
“uniqueness of typing”

2. Instead of proving such statements for each theory of dependent
types – there is a new one roughly every week – we would like
to prove them once and for all for a wider class of theories.

3. More importantly, some theorems want to talk about “type
theories”, or “models of type theories”, not just about one type
theory, or models for one type theory. say something about
initiality here?

4. The class has to be large enough to encompass many
established real-world examples, such as MLTT, MLTT with
equality reflection, or with universes, or Homotopy Type
Theory. Because type theory is notoriously finicky, we are also
formalising these definitions and the theorems we prove about
them in Coq.

General Type Theories: Motivation
We want meta theorems such as:
Proposition (Uniqueness of typing)
If Γ ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑡 ∶ 𝐵 then Γ ⊢ 𝐴 ≡ 𝐵.

• for which type theory?
• stable under extensions of the theory?
• …

We need a mathematically precise formulation of
a class of type theories to answer such questions.
Our suggestion: General Type Theories.

2 / 11

1. We want to study dependent type theories. People have been
doing this for decades, and they prove theorems such as
“uniqueness of typing”

2. Instead of proving such statements for each theory of dependent
types – there is a new one roughly every week – we would like
to prove them once and for all for a wider class of theories.

3. More importantly, some theorems want to talk about “type
theories”, or “models of type theories”, not just about one type
theory, or models for one type theory. say something about
initiality here?

4. The class has to be large enough to encompass many
established real-world examples, such as MLTT, MLTT with
equality reflection, or with universes, or Homotopy Type
Theory. Because type theory is notoriously finicky, we are also
formalising these definitions and the theorems we prove about
them in Coq.

General Type Theories: Overview 1

• Four judgement forms:
1 ⊢ 𝐴 type
2 ⊢ 𝑡 ∶ 𝐴
3 ⊢ 𝐴 ≡ 𝐵
4 ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

• structural rules: variables, conversion, etc.

3 / 11

1. These questions kept Peter up at night, and he got Andrej and
me on board developing this notion of general type theories. I
will not go into detail here, because that would be a talk in
itself, but only sketch enough so that I can talk about how it
relates to Andromeda.

2. (bullet 1) Contexts are implicit in schemata, but tacitly we
view all of these judgements as living over “some context”.

3. We make no simplifying assumptions like that we always work
in a universe or that there is a type of all types.

4. The structural rules are at the core of dependent type theory,
and we are committed to them.

5. If you think there should be a judgement for contexts: They
are a derived notion.

General Type Theories: Overview 2

• a signature mapping rule names to rules
• a well-ordering on the signature precludes

circularity
• three notions of rule, incrementally singling

out “good rules”
• closure conditions
• flat rules
• well-typed rules

• each judgement in a rule is given over a local
context

4 / 11

1. A theory is then given by a signature, by which we mean a
well-ordered collection of further schematic rules, each
extending the theory defined thus far. Such an extension
specifies a closure rule that the derivability relation has to
satisfy.

2. In the development with Peter, we are very careful to present
these theory extensions in stages, so that they can be
independent. This is important because we want to be as
general as possible, for instance, we don’t want to introduce
finiteness assumptions unnecessarily.

3. However, if we want to implement these things on a computer,
we know that certain restrictions will hold; for instance rules
will always be given to us in a linear order, and their number
will be finite because the source code is.

4. An important point of GTT as formalised is that we pay close
attention to morphisms of signatures and translations of
theories. This is not implemented in Andromeda yet, but Anja
will be giving a seminar on it next week.

Example (1)

Γ, 𝑥∶𝐴 ⊢ 𝐵 type Γ, 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆(𝑥∶𝐴) 𝑡 ∶ Π(𝑥∶𝐴) 𝐵 𝜆-intro

⊢ 𝐴 type 𝑥∶𝐴 ⊢ 𝐵 type 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
⊢ − ∶ Π 𝐴 𝐵 𝜆

Used as
𝜆 𝐴 𝐵 𝑡

5 / 11

1. This is a reasonable statement of the introduction rule for
lambda: Given a type family 𝐵 and a term for an abstract 𝑥,
we can form a dependent function from 𝐴 to 𝐵. However, this
style is not suitable for GTTs.

2. Remember that we only care about the local part of the
context, the rest is implicit. We don’t want to see it. We
require that every meta-variable be introduced as the “head” of
a judgement, so for instance we want to know exactly what 𝐴
is before we encounter it in the local context of 𝐵.

3. Notice also how the local contexts already tell us how to bind
things, so the annotation in the conclusion are superfluous.
Finally, the name of the rule, 𝜆 here in the conclusion,
identifies the rule in the signature. There is no need to repeat
the arguments – a type 𝐴, a family 𝐵, a term 𝑡 – because this
rule takes exactly the premises. The result is fully annotated
syntax, for instance the “bad” rule does not know about the
codomain of the function. If you think this is annoying, let me
remind you that some type theories such as ETT require full
annotations, and we want to cover them in GTT.

Example (1)

((((((((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhhhhhhhh

Γ, 𝑥∶𝐴 ⊢ 𝐵 type Γ, 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆(𝑥∶𝐴) 𝑡 ∶ Π(𝑥∶𝐴) 𝐵 𝜆-intro

⊢ 𝐴 type 𝑥∶𝐴 ⊢ 𝐵 type 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
⊢ − ∶ Π 𝐴 𝐵 𝜆

Used as
𝜆 𝐴 𝐵 𝑡

5 / 11

1. This is a reasonable statement of the introduction rule for
lambda: Given a type family 𝐵 and a term for an abstract 𝑥,
we can form a dependent function from 𝐴 to 𝐵. However, this
style is not suitable for GTTs.

2. Remember that we only care about the local part of the
context, the rest is implicit. We don’t want to see it. We
require that every meta-variable be introduced as the “head” of
a judgement, so for instance we want to know exactly what 𝐴
is before we encounter it in the local context of 𝐵.

3. Notice also how the local contexts already tell us how to bind
things, so the annotation in the conclusion are superfluous.
Finally, the name of the rule, 𝜆 here in the conclusion,
identifies the rule in the signature. There is no need to repeat
the arguments – a type 𝐴, a family 𝐵, a term 𝑡 – because this
rule takes exactly the premises. The result is fully annotated
syntax, for instance the “bad” rule does not know about the
codomain of the function. If you think this is annoying, let me
remind you that some type theories such as ETT require full
annotations, and we want to cover them in GTT.

Example (1)

((((((((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhhhhhhhh

Γ, 𝑥∶𝐴 ⊢ 𝐵 type Γ, 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆(𝑥∶𝐴) 𝑡 ∶ Π(𝑥∶𝐴) 𝐵 𝜆-intro

⊢ 𝐴 type 𝑥∶𝐴 ⊢ 𝐵 type 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
⊢ − ∶ Π 𝐴 𝐵 𝜆

Used as
𝜆 𝐴 𝐵 𝑡

5 / 11

1. This is a reasonable statement of the introduction rule for
lambda: Given a type family 𝐵 and a term for an abstract 𝑥,
we can form a dependent function from 𝐴 to 𝐵. However, this
style is not suitable for GTTs.

2. Remember that we only care about the local part of the
context, the rest is implicit. We don’t want to see it. We
require that every meta-variable be introduced as the “head” of
a judgement, so for instance we want to know exactly what 𝐴
is before we encounter it in the local context of 𝐵.

3. Notice also how the local contexts already tell us how to bind
things, so the annotation in the conclusion are superfluous.
Finally, the name of the rule, 𝜆 here in the conclusion,
identifies the rule in the signature. There is no need to repeat
the arguments – a type 𝐴, a family 𝐵, a term 𝑡 – because this
rule takes exactly the premises. The result is fully annotated
syntax, for instance the “bad” rule does not know about the
codomain of the function. If you think this is annoying, let me
remind you that some type theories such as ETT require full
annotations, and we want to cover them in GTT.

Example (1)

((((((((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhhhhhhhh

Γ, 𝑥∶𝐴 ⊢ 𝐵 type Γ, 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆(𝑥∶𝐴) 𝑡 ∶ Π(𝑥∶𝐴) 𝐵 𝜆-intro

⊢ 𝐴 type 𝑥∶𝐴 ⊢ 𝐵 type 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
⊢ − ∶ Π 𝐴 𝐵 𝜆

Used as
𝜆 𝐴 𝐵 𝑡

5 / 11

1. This is a reasonable statement of the introduction rule for
lambda: Given a type family 𝐵 and a term for an abstract 𝑥,
we can form a dependent function from 𝐴 to 𝐵. However, this
style is not suitable for GTTs.

2. Remember that we only care about the local part of the
context, the rest is implicit. We don’t want to see it. We
require that every meta-variable be introduced as the “head” of
a judgement, so for instance we want to know exactly what 𝐴
is before we encounter it in the local context of 𝐵.

3. Notice also how the local contexts already tell us how to bind
things, so the annotation in the conclusion are superfluous.
Finally, the name of the rule, 𝜆 here in the conclusion,
identifies the rule in the signature. There is no need to repeat
the arguments – a type 𝐴, a family 𝐵, a term 𝑡 – because this
rule takes exactly the premises. The result is fully annotated
syntax, for instance the “bad” rule does not know about the
codomain of the function. If you think this is annoying, let me
remind you that some type theories such as ETT require full
annotations, and we want to cover them in GTT.

Example (2)

⊢ 𝐴 type 𝑥∶𝐴 ⊢ 𝐵 type 𝑥∶𝐴 ⊢ 𝑡 ∶ 𝐵
⊢ − ∶ Π 𝐴 𝐵 𝜆

6 / 11

1. Let me explain a little bit the terminology for rules here.

Andromeda
A

M
L

O
C

am
l

User code (?)

Libraries Eq Imp Snf

Theories Π, Σ ETT HoTT

@@I@@R ��	 ���

-
�

Evaluator

6?

Nucleus

7 / 11

1. Roughly, Andromeda has three components: the Nucleus and
the Evaluator which are written in OCaml and some libraries
written in the Andromeda Meta Language.

2. The Nucleus here at the foundation implements the structural
rules such as conversion and variable handling, meta-theorems,
alpha-equality, and for some reason export to JSON.

3. The Evaluator executes the User code written in AML and
calls the Nucleus to deal with the type theory part of an AML
program. To the user, the type theory part of AML looks like
smart constructors.

4. The user may use some libraries we provide, for instance facts
about equality or implicit arguments to make writing proofs
less cumbersome.

5. But because we cannot hope to write a decision procedure for
type checking, this is not a one-way process. Instead, when the
evaluator has questions it can’t figure out by itself, it asks the
libraries and the user program. So control is handed back and
forth between the different components.

GTT in AML 1

• ML/Eff style meta language for GTTs
• four built-in abstract data types for the

judgement forms
• judgements are abstracted to indicate local

contexts
• static checking of judgement forms and

lengths of local contexts
• dynamic checking of the judgements

themselves
• user-defined GTT rules are also checked

8 / 11

1. The Andromeda meta-language, AML
2. Local contexts are the only form of binders present in the

language. The usual things that you expect to be binding, such
as a lambda abstraction, or a Π-type are “binding” by their
way of handling local contexts.

3. Statically: Scoping, arities
4. The different stages in the life cycle of a rule also make an

appearance in Andromeda, as parsing, ML type-checking, and
evaluation of the rule declaration, i.e. checking the actually
well-formedness of the rule

5. Judgements do not carry their contexts. Suppose they did.
When we want to combine judgements constructed in different
contexts, we would be forced explicitly use weakening and
exchange rules, or construct context morphisms. It would be
much too laborious. Instead, each variable simply carries its
type.

GTT meta-theory in the nucleus

Andromeda relies on the following meta
theorems:

1 Uniqueness of typing
2 Presuppositions theorem (“Sanity” in

Ljubljana parlance)
3 inversion principles
4 admissibility of substitution

9 / 11

1. Andromeda’s nucleus believes in certain meta-theorems that we
have proved for GTT’s. They are exploited in various ways
internally, and exported in the interface to AML.

2. substitution is actually baked into GTT at the moment, but it
might disappear. We do however want it in Andromeda.

3. pattern matching

Derivations modulo proof-irrelevance

type ty =
| TypeConstructor o f Name . con s t ruc to r ∗ argument l i s t
| TypeMeta o f type_meta ∗ term l i s t

and term =
| TermAtom of atom
| TermBound o f bound
| TermConstructor o f Name . con s t ruc to r ∗ argument l i s t
| TermMeta o f term_meta ∗ term l i s t
| TermConvert o f term ∗ assumption ∗ ty

and eq_type = EqType o f assumption ∗ ty ∗ ty
and eq_term = EqTerm of assumption ∗ term ∗ term ∗ ty
and atom = { atom_name : Name . atom ; atom_type : ty }
and ’ t meta = { meta_name : Name . meta ; meta_type : ’ t }
and assumption = (ty , premise_boundary) Assumption . t

10 / 11

1. So what’s actually implemented in the nucleus? What do the
data-types look like, and how do we implement meta-theorems?
Actually, “desirable meta-theorems” have been informing the
implementation of Andromeda for a long time, even before we
knew about GTT, so we had a good idea of what we would
need to do.

2. There are no terms. There are only derivations.
3. Type- and term-formers are stored. Structural rules are also

stored, in particular conversion.
4. Derivations of equality judgements are not stored. Instead, we

keep only the conclusion and the set of assumptions that was
used (necessary for reconstructing the context and proving
meta-theorems)

5. While we do not want to bother the user with context
management, we can only make sense of judgements if we know
what context they were constructed in.

6. Andromeda and GTT slightly differ in their treatment of
meta-variables. In GTT, they are simply treated as temporary
extensions of the signature. Because we aren’t paranoid, we do
not store the rules we used in the assumptions, but we do have
to keep track of the meta variables. So instead of adding them
to the signature, each meta variable knows its own arity.

Demo

Thank you

11 / 11

Demo

Thank you

11 / 11

Bonus: Why strengthening matters

• Strengthening is usually formulated in terms
of free variables of a judgement

• because of proof irrelevance, this has to be
relativised to free variables in the derivation
of a judgement

• inversion principles are gimped without
strengthening, because all sub-terms of a
judgement would share the same context

12 / 11

	Appendix

