Algorithmic Inversion Principles in Extensional Type Theory

Andrej Bauer Philipp G. Haselwarter

University of Ljubljana, Slovenia

EUTypes Nijmegen 2018

Inversion principles

Input: a derivable judgement

$$\Gamma \vdash (\lambda x{:}A.B\,.\,s) : C$$

Inversion principles

Input: a derivable judgement

$$\Gamma \vdash (\lambda x : A.B.s) : C$$

Question: Is there a derivation starting with a particular shape?

$$\frac{\frac{\mathcal{D}_1}{\Gamma,\; x:A \vdash s:B}}{\frac{\Gamma \vdash (\lambda x:A.B\,.\,s): \prod_{(x:A)} B}{\Gamma \vdash (\lambda x:A.B\,.\,s):C}} \frac{\mathcal{D}_2}{\Gamma \vdash \prod_{(x:A)} B \equiv C}$$

Inversion principles

Input: a derivable judgement

$$\Gamma \vdash (\lambda x : A.B.s) : C$$

Question: Is there a derivation starting with a particular shape?

$$\frac{\frac{\mathcal{D}_1}{\Gamma,\,x:A\vdash s:B}}{\frac{\Gamma\vdash(\lambda x:A.B\,.\,s):\prod_{(x:A)}B}{\Gamma\vdash(\lambda x:A.B\,.\,s):C}}$$

Answer: Yes! Also for Extensional Type Theory (ETT).

For forward reasoning we need to *combine* judgements.

$$\frac{\Gamma \vdash A \; \mathsf{type} \qquad \Gamma, \, x \colon\! A \vdash B \; \mathsf{type}}{\Gamma \vdash \prod_{(x \colon\! A)} B \; \mathsf{type}}$$

For forward reasoning we need to *combine* judgements.

$$\frac{\Delta \vdash A \text{ type} \qquad \Xi, \, x : A \vdash B \text{ type}}{\Gamma \vdash \prod_{(x : A)} B \text{ type}}$$

For forward reasoning we need to *combine* judgements.

Contexts in premises must be independent!

For forward reasoning we need to *combine* judgements.

Contexts in premises must be independent!

$$\frac{\Delta \not\vdash A \text{ type} \qquad \Xi, \, x : A \not\vdash B \text{ type} \qquad \Delta \leq \Gamma \qquad \Xi \leq \Gamma}{\Gamma \not\vdash \prod_{(x : A)} B \text{ type}}$$

New side-conditions: $\Delta \leq \Gamma$

- at least: $\forall \Gamma, \ \bullet \leq \Gamma \ \text{and} \ \Gamma \leq (\Gamma, \, x : A)$
- at most: if $\Delta \leq \Gamma$ and $\Delta \not\models^f \mathcal{J}$, then $\Gamma \not\models^f \mathcal{J}$

For forward reasoning we need to *combine* judgements.

Contexts in premises must be independent!

New side-conditions: $\Delta \leq \Gamma$

- at least: $\forall \Gamma, \ \bullet \leq \Gamma \ \text{and} \ \Gamma \leq (\Gamma, \, x : A)$
- at most: if $\Delta \leq \Gamma$ and $\Delta \vdash^f \mathcal{J}$, then $\Gamma \vdash^f \mathcal{J}$

Example: $x:A, y:B \leq x:\bot, y:C$

For forward reasoning we need to *combine* judgements.

Contexts in premises must be independent!

$$\frac{\Delta \not\vdash A \text{ type} \qquad \Xi, \, x \colon A \not\vdash B \text{ type} \qquad \Delta \leq \Gamma \qquad \Xi \leq \Gamma}{\Gamma \not\vdash \prod_{(x \colon A)} B \text{ type}}$$

New side-conditions: $\Delta \leq \Gamma$

- at least: $\forall \Gamma, \ \bullet \leq \Gamma \ \text{and} \ \Gamma \leq (\Gamma, \, x : A)$
- at most: if $\Delta \leq \Gamma$ and $\Delta \vdash^f \mathcal{J}$, then $\Gamma \vdash^f \mathcal{J}$

Example: $x:A, y:B \leq x:\bot, y:C$

Non-example: $x:A, y:B \not\leq x:A, z:B$

Axioms for compatible contexts

$$\frac{\Delta \not\vdash A \text{ type} \qquad \Xi, \, x \colon\! A \not\vdash B \text{ type} \qquad \{\Delta, \Xi\} \uparrow \Gamma}{\Gamma \not\vdash \prod_{(x \colon\! A)} B \text{ type}}$$

The relation $\{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma$ generalises sub-contexts.

it must satisfy:

$$\begin{split} & \{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma \implies \forall j \leq n \,,\; \Gamma_j \leq \Gamma \\ & (\forall j \leq n \,,\; \Gamma_j \leq \Gamma) \implies \exists \Gamma' \leq \Gamma \,,\; \{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma' \end{split}$$

- we can choose to compute Γ from $\Gamma_1,...,\Gamma_n$

Axioms for compatible contexts

$$\frac{\Delta \vdash^f A \text{ type } \qquad \Xi' \vdash^f B \text{ type } \qquad \Xi' \backslash (x:A) \sim \Xi \qquad \{\Delta,\Xi\} \uparrow \Gamma}{\Gamma \vdash^f \prod_{(x:A)} B \text{ type }}$$

The relation $\{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma$ generalises sub-contexts.

it must satisfy:

$$\begin{split} & \{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma \implies \forall j \leq n \,,\; \Gamma_j \leq \Gamma \\ & (\forall j \leq n \,,\; \Gamma_j \leq \Gamma) \implies \exists \Gamma' \leq \Gamma \,,\; \{\Gamma_1,...,\Gamma_n\} \uparrow \Gamma' \end{split}$$

- we can choose to compute Γ from $\Gamma_1,...,\Gamma_n$

The relation $\Xi' \setminus (x:A) \sim \Xi$ generalises $\Xi' = \Xi, \ x:A.$ Don't worry about this.

Relating the new theory to ETT

Proposition (Conservativity)

If $\Gamma \vdash^{f} \mathcal{J}$ then $\Gamma \vdash \mathcal{J}$.

Proposition (Completeness)

If $\Gamma \vdash \mathcal{J}$ then there is $\Delta \leq \Gamma$ such that $\Delta \not\models^f \mathcal{J}$.

Strengthening

```
If \Gamma, x:A \vdash s:B derivable and x \notin \mathit{FreeVar}(s,B), then \Gamma \vdash s:B ?
```

Strengthening

```
If \Gamma, \, x : A \vdash s : B derivable and x \notin \mathit{FreeVar}(s, B), then \Gamma \vdash s : B ?
```

Answer: ITT: yes, ETT: no.

Strengthening

If Γ , $x:A \vdash s:B$ derivable and $x \notin \mathit{FreeVar}(s,B)$, then $\Gamma \vdash s:B$?

Answer: ITT: yes, ETT: no.

Example:

$$\underbrace{x : A, \, p : A = B \vdash x : A}_{x : A, \, p : A = B \vdash A \equiv B} \underbrace{x : A, \, p : A = B \vdash A \equiv B}_{x : A, \, p : A = B \vdash x : B}$$

Strengthening and inversion

Example: Deconstruct an implication

$$\Gamma \not\vdash A \to B$$
 type

Really, this is

$$\Gamma
varphi \prod_{(\underline{}:A)} B$$
 type

Inversion only yields $\Gamma, x : A \not\vdash B$ type, but B is independent of x!

Idea: annotated type theory

Assumption sets

$$\alpha,\beta,\gamma \ ::= \ \{x_1,...,x_n\}$$

Judgements

$$\Gamma \vdash^{\alpha} A \ \ \mathsf{type} \ \ | \quad \Gamma \vdash^{\gamma} s : A \ \ | \quad \dots$$

Contexts

$$\Gamma, \Delta ::= \bullet \mid \Gamma, x : A^{\alpha}$$

Types

$$A,B \; ::= \qquad \qquad \textstyle \prod_{(x:A^{\alpha})} B^{\beta} \; \mid \; \operatorname{Eq}_{A^{\alpha}}(s^{\sigma},t^{\tau}) \; \mid \; \ldots$$

Recovering strengthening

Proposition

Given $\Gamma \vdash^{\gamma} s : A$, there exists a context $\Gamma_{|\gamma}$, such that $\gamma = \operatorname{dom}(\Gamma_{|\gamma})$, $\Gamma_{|\gamma} \leq \Gamma$, and $\Gamma_{|\gamma} \vdash^{\gamma} s : A$.

Annotated TT: Product formation

$$\Delta \vdash^{\alpha} A \text{ type } \qquad \Xi \vdash^{\beta} B \text{ type } \qquad \Xi \backslash (x : A^{\alpha}) \sim \Xi' \qquad \{\Delta, \Xi'\} \uparrow \Gamma$$

$$\alpha \cup (\beta \backslash \{x\}) \subseteq \gamma \qquad \gamma \subseteq \text{dom}(\Gamma)$$

 $\Gamma dash^{\gamma} \prod_{(x:A^{lpha})} B^{eta}$ type

Annotated TT: Conversion

$$\frac{\Xi \vdash^{\xi} s : A \qquad \Delta \vdash^{\delta} A \equiv B \qquad \{\Xi, \Delta\} \uparrow \Gamma}{\Gamma \vdash^{\gamma} s : B}$$

Annotated TT: Conversion

$$\frac{\Xi \vdash^{\xi} s : A \qquad \Delta \vdash^{\delta} A \equiv B \qquad \{\Xi, \Delta\} \uparrow \Gamma}{\xi \cup \delta \subseteq \gamma \qquad \gamma \subseteq \mathrm{dom}(\Gamma)}$$

$$\frac{\Gamma \vdash^{\gamma} s : B}{\Gamma \vdash^{\gamma} s : B}$$

Definition. Given an annotated context Γ (resp. judgement \mathcal{J}), its stripping $\underline{\Gamma}$ (resp. \mathcal{J}) is given by deleting all annotations.

Definition. Given an annotated context Γ (resp. judgement \mathcal{J}), its stripping $\underline{\Gamma}$ (resp. $\underline{\mathcal{J}}$) is given by deleting all annotations.

Proposition (Conservativity of ATT)

If $\Gamma \vdash^{\gamma} \mathcal{J}$ then there exists $\underline{\mathcal{J}}$, such that $\Gamma \vdash \underline{\mathcal{J}}$.

Definition. Given an annotated context Γ (resp. judgement \mathcal{J}), its stripping $\underline{\Gamma}$ (resp. $\underline{\mathcal{J}}$) is given by deleting all annotations.

Proposition (Conservativity of ATT)

If $\Gamma \vdash^{\gamma} \mathcal{J}$ then there exists $\underline{\mathcal{J}}$, such that $\Gamma \vdash \underline{\mathcal{J}}$.

Proposition (Completeness of ATT)

If $\Gamma \vdash \mathcal{J}$ then there are Γ' , γ , and \mathcal{J}' , such that $\underline{\Gamma}' \leq \Gamma$, $\underline{\mathcal{J}}' = \mathcal{J}$ and $\Gamma' \vdash^{\gamma} \mathcal{J}'$.

Definition. Given an annotated context Γ (resp. judgement \mathcal{J}), its stripping $\underline{\Gamma}$ (resp. $\underline{\mathcal{J}}$) is given by deleting all annotations.

Proposition (Conservativity of ATT)

If $\Gamma \vdash^{\gamma} \mathcal{J}$ then there exists $\underline{\mathcal{J}}$, such that $\Gamma \vdash \underline{\mathcal{J}}$.

Proposition (Completeness of ATT)

If $\Gamma \vdash \mathcal{J}$ then there are Γ' , γ , and \mathcal{J}' , such that $\underline{\Gamma}' \leq \Gamma$, $\underline{\mathcal{J}}' = \mathcal{J}$ and $\Gamma' \vdash^{\gamma} \mathcal{J}'$.

Thank you

Abstraction relation

We assume given a relation $\Delta \backslash (x:A) \sim \Delta'$ which satisfies the following conditions:

$$\Delta \setminus (x:A) \sim \Delta' \implies \exists \Phi \leq \Delta' \,, \ \Delta \leq (\Phi, x:A) \qquad \text{(abs-elim)}$$

$$\Delta \leq (\Gamma, x:A) \implies \exists \Delta' \leq \Gamma \,, \ \Delta \setminus (x:A) \sim \Delta' \qquad \text{(abs-intro)}$$